- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于聚类的图像分割研究CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结果很大程度上依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果[2],原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统[1]。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。
二.常用的图像分割方法
1. 基于阈值的分割方法包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。
在许多情况下,物体和背景的对比度在图像中的各处不是一样的,这时很难用一个统一的阈值将物体与背景分开。这时可以根据图像的局部特征分别采用不同的阚值进行分割。实际处理时,需要按照具体问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻域范围选择每点处的阈值,进行图像分割。这时的阈值为自适应阈值。
阈值的选择需要根据具体问题来确定,一般通过实验来确定。对于给定的图像,可以通过分析直方图的方法确定最佳的阈值,例如当直方图明显呈现双峰情况时,可以选择两个峰值的中点作为最佳阈值。基于边缘的分割方法检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。
由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,如图4所示。其中loG算子是采用Laplacian算子求高斯函数的二阶导数,Canny算子是高斯函数的一阶导数,它在噪声抑制和边缘检测之间取得了较好的平衡基于聚类分析的图像分割方法 特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。迭代执行前面的步骤直到新旧类均值之差小于某一阈值。模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个对各类的隶属度,用隶属度更好地描述边缘像素亦此亦彼的特点,适合处理事物内在的不确定性。利用模糊C均值(FCM)非监督模糊聚类标定的特点进行图像分割,可以减少人为的干预,且较适合图像中存在不确定性和模糊性的特点。 K-均值聚类工作原理K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数 已经收
您可能关注的文档
- 《快乐小鱼门店运营管理指导手册》.pdf
- 97-华夏幸福基业投资开发股份有限公司 投融资管理制度.pdf
- 101021华电内蒙古能源有限公司包头发电分公司脱硫添加剂试验方案及经济性预算报告.pdf
- CNG/汽油两用燃料发动机油低温性能试验研究.pdf
- E0-E40乙醇汽油混合燃料在汽油发动机中的试验研究.pdf
- 柴油机燃用二甲醚柴油混合燃料燃烧与排放的试验研究.pdf
- 超市卖场营运管理手册.pdf
- 超市卖场营运业务管理手册.pdf
- 大型循环流化床锅炉燃料及脱硫剂燃烧试验.pdf
- 电喷汽油机燃烧甲醇燃料的试验研究.pdf
- 人教新目标版英语九年级 中考模拟学情评估(三)(含答案).pdf
- 上海市风华中学2024-2025学年高三上学期9月阶段测试英语试题(无答案).pdf
- 统编版2024-2025学年语文六年级上册期末检测卷(有答案).pdf
- 人教新目标版英语九年级第二学期全册学情评估(含答案).pdf
- 内蒙古自治区巴彦淖尔市杭锦后旗第六中学2024-2025学年八年级上学期阶段性测试历史试题(解析版).pdf
- 湖南省娄底市涟源市部分学校2024-2025学年高一上学期9月月考语文试题 Word版无答案.pdf
- 湖南省衡阳市常宁市2023-2024学年七年级上学期期末考试英语试题.pdf
- 湖南省娄底市涟源市部分学校2024-2025学年高一上学期9月月考语文试题 Word版含解析.pdf
- 江苏省泰州市姜堰区城西实验学校2024-2025学年部编版九年级上学期月考历史试卷(原卷版).pdf
- 内蒙古伊金霍洛旗2022-2023学年七年级上学期期末考试英语试题.pdf
最近下载
- 第十一单元第二十一节德彪西教学课件-2021-2022学年高中音乐人音版必修音乐鉴赏.pptx
- 人教中图版(2019)信息技术必修2 1.2 认识信息社会 教案(表格式).docx
- 高性能低表面处理环氧涂料的制备和性能研究.docx VIP
- 永临结合及转换方案-投标200页简易版.docx
- 【语文】人教部编版语文八年级上册:古诗文理解性默写(完整版).pdf VIP
- 基本乐理音程介绍PPT课件.pptx
- GB_T27065-2015_合格评定产品、过程和服务认证机构要求.doc
- 环氧改性有机硅树脂低表面能涂料的研制.doc VIP
- 0~3岁婴幼儿心理发展与教育(高职)全套教学课件.pptx
- 语文一年级上册核心素养教案全册.pdf VIP
文档评论(0)