离散小波变换课程设计.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
摘 要 离散变换(DT)是数字图像处理中重要的变换,ISO/IEC JTC1 SC29小组制定的JPEG2000静态图像编码标准中的图像变换技术就采用了离散小波变换,这些编码的最大特点是在不丢失重要信息的同时能以较高的比率压缩图像数据,并且其算法计算量小。文介绍了基于DT变换的图像压缩的基本原理及其实现步骤并使用MATLAB对原始图像进行压缩,给出了实验仿真结果。 离散变换(DT)图像压缩MATLAB 目 录 1离散变换简介 1 2离散变换的定义 2 2.1离散变换的定义 2.2离散变换 2 3离散变换图像压缩原理 4 DWT变换的仿真实现 4.1 MATLAB简介 4 4.2 DWT变换的Matlab仿真实现 4.3系数的分析 总 结 7 参考文献 8 离散变换简介信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。 在每个可能的缩放因子和平移参数下计算小波系数,其计算量相当大, 将产生惊人的数据量,而且有许多数据是无用的。如果缩放因子和平移参数都选择为2j(j0且为整数)的倍数,即只选择部分缩放因子和平移参数来进行计算, 就会使分析的数据量大大减少。使用这样的缩放因子和平移参数的小波变换称为双尺度小波变换,它是离散小波变换的一种形式。通常离散小波变换就是指双尺度小波变换。 执行离散小波变换的有效方法是使用滤波器, 该方法是Mallat于1988年提出的,称为Mallat算法。这种方法实际上是一种信号分解的方法, 在数字信号处理中常称为双通道子带编码。 用滤波器执行离散小波变换的概念如图所示。S表示原始的输入信号,通过两个互补的滤波器组,其中一个滤波器为低通滤波器,通过该滤波器可得到信号的近似值A(Approximations),另一个为高通滤波器, 通过该滤波器可得到信号的细节值D(Detail)。 1.1 小波分解示意图 在小波分析中,近似值是大的缩放因子计算的系数,表示信号的低频分量,而细节值是小的缩放因子计算的系数,表示信号的高频分量。实际应用中,信号的低频分量往往是最重要的,而高频分量只起一个修饰的作用。如同一个人的声音一样, 把高频分量去掉后,听起来声音会发生改变,但还能听出说的是什么内容,但如果把低频分量删除后,就会什么内容也听不出来了。 离散变换的定义离散变换的定义在图像处理中应用的小波变换是二维小波变换,定义为 式中,分别表示在x,y轴的平移;逆变换为 式中,为系数,为 而是一个二维基本小波。 2.2离散变换的应用小波分析的应用是与小波分析的理论研究紧密地结合在一起的。随着小波理论的日益成熟,人们对小波分析的实际应用越来越重视,小波分析的应用领域也变得十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理等方面。例如,在数学方面,它已用于数值分析、构造快速数值方法、高维矩阵运算、曲线曲面构造、微分方程求解、控制论等;在信号分析方面的滤波、去噪声、压缩、传递等;在图像处理方面的图像压缩、分类、识别与诊断,去污等;离散变换图像处理方面的应用用小波变换进行图像分解 使用小波变换完成图像分解的方法很多,例如,均匀分解、非均匀分解、八带分解、小波包分解等。其中八带分解是使用最广的一种分解方法,这种分解方法把低频部分分解成比较窄的频带,而对每一级分解得到的高频部分不再进一步进行分解。 (a) 一次二维DWT (b) 两次二维DWT图2.1为八带分解示意图(a) 一次二维DWT(b) 两次二维DWT用小波变换进行图像处理 对静态二维数字图像,可先对其进行若干次二维DWT变换,将图像信息分解为高频成分H、V和D和低频成分A。对低频部分A,由于它对压缩的结果影响很大,因此可采用无损编码方法,如Huffman、DPCM等;对H、V和D部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。ISO/IEC JTC1 SC29小组制定的JPEG2000静态图像编码标准中的图像变换技术就采用了离散小波变换,这些编码的最大特点是在不丢失重要信息的同时,能以较高的比率压缩图像数据,并且其算法计算量小。离散变换图像压缩原理 基于小波分析的压缩方法很多,比较成功的有小波包最好基方法、小波域纹理模型方法、小波变换零树压缩、小波变换向量量化压缩等。 离散小波变换系统进行图像压缩基本原理是:根据二维小波分解算法,一幅图像做小波分解后,可得到一系列不同分辨率的图像,而表现一幅图

您可能关注的文档

文档评论(0)

14576 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档