求解全局优化问题的正交协方差矩阵自适应进化策略算法01.docVIP

求解全局优化问题的正交协方差矩阵自适应进化策略算法01.doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
求解全局优化问题的正交协方差矩阵自适应进化策略算法01.doc

求解全局优化问题的正交协方差矩阵自适应进化策略算法 摘要:针对协方差矩阵自适应进化策略(cmaes)求解高维多模态函数时存在早熟收敛及求解精度不高的缺陷, 提出一种融合量化正交设计(od/q)思想的正交cmaes算法。首先利用小种群的cmaes进行快速有哪些信誉好的足球投注网站, 当算法陷入局部极值时, 依据当前最好解的位置动态选取基向量, 接着利用od/q构造的试验向量探测包括极值附近区域在内的整个有哪些信誉好的足球投注网站空间, 从而引导算法跳出局部最优。通过对6个高维多模态标准函数进行测试并与其他算法相比较, 其结果表明, 正交cmaes算法具有更好的有哪些信誉好的足球投注网站精度、收敛速度和全局寻优性能。 关键词:协方差矩阵自适应进化策略;正交设计;高维多模态;进化策略;函数优化  hybrid orthogonal cmaes for solving global optimization problems  huang ya.fei1,2*, liang xi.ming1, chen yi.xiong1 1. school of information science and engineering, central south university, changsha hunan 410083, china; 2. school of electric and information engineering, changsha university of science and technology, changsha hunan 410114, china abstract: in order to overcome the shortcomings of covariance matrix adaptation evolution strategy(cmaes), such as premature convergence and low precision, when it is used in high-dimensional multimodal optimization, an hybrid algorithm combined cmaes with orthogonal design with quantization(od/q) was proposed in this study. firstly, the small population cmaes was used to realize a fast searching. when orthogonal cmaes algorithm trapped in local extremum, base vectors for od/q were selected dynamically based on the position of current best solution. then the entire solution space, including the field around extreme value, was explored by trial vectors generated by od/q. the proposed algorithm was guided by this process jumping out of the local optimum. the new approach is tested on six high-dimensional multimodal benchmark functions. compared with other algorithms, the new algorithm has better search precision, convergent speed and capacity of global search. in order to overcome the shortcomings of covariance matrix adaptation evolution strategy (cmaes), such as premature convergence and low precision, when it is used in high.dimensional multimodal optimization, a hybrid algorithm combined cmaes with orthogonal design with quantization (od/q) was proposed. firstly, the small population cmaes was used to

您可能关注的文档

文档评论(0)

14576 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档