医学图像的分割.doc

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
医学图像的分割.doc

PAGE  第六章 医学图像分割 医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。 第一节 医学图像分割的意义、概念、分类和研究现状 医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛??应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。 所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。一般说来,有意义的图像分割结果中至少存在一个包含感兴趣目标的区域。 区域(Region)作为图像分割中像素的连通集合和基本分割单位,可以按照不同的连通性来定义:4连通区域和8连通区域。区域的连通性是指在一个区域中任意两个像素之间,都存在一条完全由属于这个区域的元素所构成的连通路径。如果只依据处于四正位(上、下、左、右)或四角位(左上、左下、右上、右下)的相邻像素确定区域的连通性,就称为4连通;如果同时依据处于四正位和四角位相邻的像素确定区域的连通性则称为8连通。 在数学上,医学图像分割可以用集合论模型予以描述:已知一幅医学图像 SKIPIF 1 0 和一组相似性约束条件 SKIPIF 1 0 ( SKIPIF 1 0 ),对 SKIPIF 1 0 的分割就是求取它的一个划分的过程,即:  SKIPIF 1 0  SKIPIF 1 0 = SKIPIF 1 0 ,  SKIPIF 1 0  (6.1) 其中,  SKIPIF 1 0 为同时满足所有相似性约束条件 SKIPIF 1 0 ( SKIPIF 1 0 )的连通像素点的集合,即我们所谓的图像区域; SKIPIF 1 0 为不小于2的正整数,表示分割后区域的个数。 在如上集合论模型描述中,如果保持区域连通性的约束被取消,那么对图像所属像素集的划分就称为分类(Pixel classification),其中每一个像素集合称为一类(Class)。在本章后面的讨论中,为了描述上的方便,我们往往不加区分地将经典的区域分割和像素分类统称为图像分割。 通常,医学图像分割方法可以划归为三大类:基于阈值的分割方法、基于边缘的分割方法和基于区域的分割方法。在理想情况下,医学图像中的每一个区域都是由相应的封闭轮廓线包围着。原则上,使用边界跟踪算法可以得到区域的边缘(或封闭的轮廓线);反过来,使用简单的区域填充算法也可以得到边缘所包围的区域。但在实际的医学图像中,很少能够从区域中得到连续、封闭的边缘,反之亦然。由于受人体内外环境中种种确定性、不确定性因素的干扰和成像噪声的影响,实际所获得的医学图像不可避免具有模糊、不均匀等缺陷;另外,人体的解剖结构比较复杂而且因个体的病理或生理差异有很大的不确定性,这在医学图像中引入了新的复杂性,同时也给医学图像分割带来了很大的困难;还有,现有医学图像分割的基本方法大多数是针对2D图像进行的,当推广到3D乃至4D医学图像分割应用场合时,在数据结构和算法处理上不

文档评论(0)

14576 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档