遥感图像分类方法的国内外研究现状与发展趋势.doc

遥感图像分类方法的国内外研究现状与发展趋势.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展?和应用推广模式 。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 从1946年2月14日,世界上第一台电脑ENIAC诞生在宾夕法尼亚大学。将近六十年过去了。计算机从以前简单的只会计算到如今的集工作、娱乐各种功能于一身,从以前的巨型机到现在的微型机,历经着翻天覆地的变化。面对这一个从满未知的领域,人们对其期待是巨大的。个领域的发展都离不开计算的支持,将计算机技术引入遥感也是遥感技术发展的必然趋势。 遥感图像分类是利用计算机通过对遥感数据的光谱信息和空间信息进行分析、特征选择,并按照某种规则或算法将图像中每个像元划分为不同的类别。在遥感分类中,有两种分类方法: 第一种是象元光谱分类法,即只利用象元的光谱特征对各象元进行分类。这样分分类方法是现阶段比较简单的分类方法,也是计算集机分类中用的比较多的一种。这种方法实现比较简单,但是由于仅仅只运用了遥感图像的象元光谱特征这一种性质,而遥感图像中反应的其他大量的信息都被忽略,所以分类的精度不是很好,应用前景不是很广泛。 第二种是面向对象分类法。这种分类方法不仅是考虑到象元的光谱特性,而且同时也考虑到象元的空间关系,使得计算机在分类的时候能够收集到更多的信息。面相对象分类法在今年发展很快,出现了很多新的方法,例如:神经网络法、支持向量机SVM分类法、专家分类法。同时,为了是分类精度提高,还引进了小波分析思想、分区分类思想等。 三、遥感图像分类原理 通常我们所指的遥感图像是指卫星探测到的地物亮度特征, 它们构成了光谱空间。每种地物有其固有的光谱特征, 它们位于光谱空间中的某一点。但由于干扰的存在, 环境条件的不同, 例如: 阴影, 地形上的变化, 扫描仪视角, 干湿条件, 不同时间拍摄及测量误差等, 使得测得的每类物质的光谱特征不尽相同, 同一类物质的各个样本在光谱空间是围绕某一点呈概率分布, 而不是集中到一点, 但这仍使我们可以划分边界来区分各类。因此, 我们就要对图像进行分类。图像分类的任务就是通过对各类地物波谱特征的分析选择特征参数, 将特征空间划分为不相重叠的子空间, 进而把影像内诸像元划分到各子间去, 从而实现分类。分类方法可以分为统计决策法( 判别理论识别法) 模式识别和句法模式识别。统计决策法模式识别指的是: 对研究对象进行大量的统计分析, 抽出反映模式的本质特点、特征而进行识别。主要的有监督分类中的最小距离法、逐次参数估计法、梯度法、最小均方误差法、费歇准则法和非监督分类中的按批修改的逐步聚类法、等混合距离法。此外还可以将两者结合起来, 互相补充以获得较好的效果。句法模式识别则需要了解图像结构信息, 从而对其进行分类。 四、传统统计的遥感分类方法 先从传统的遥感分类方面说起,该分类方法是目前运用较多,算法比较成熟的方法。分为监督分类和非监督分类,他们的原理都是根据图像象元的光谱特征的相似度来进行的分类。监督分类用于用户对分类区比较熟悉,由用户自己控制,非监督分类则是将象元相似度大小进行归类合并。但是未充分利用遥感图像提供的多种信息,只考虑多光谱特征,没有利用到地物空间关系、空间位置形状、纹理等方面的信息。 1、监督分类 监督分类可根据应用目标和区域,有选择地决定分类类别,可控制样本的选择,避免了非监督分类中对光谱集群组的重新归类。但个人认为其人为主观因素较强,操作者所选择的训练样本有可能不是很典型并且有可能不能反映图像的真实情况,所以图像中同一类别的光谱差异和人为因素,有可能造成样本没有代表性,并且训练样本的选取和评估需要花费较多的人力和时间。 2、非监督分类 非监督分类过程不需要任何的先验知识,仅凭遥感影像地物光谱特征的分布规律,随其自然地进行分类。但是看文献时看到,非监督分类还有一个前提,那就是:假定遥感影像上同类地物在同样条件下具有相同的光谱信息特征。如果产生的光谱万一不一定对应于操作者想要的类别,且操作者较难对产生的类别进行控制,比如图像中各类别的光谱特征会随时间、地形等变化,不同图像以及不同时段的图像之间的光谱无法保持其连续性,从而使不同图像之间的对比变得困难。 五、分类新方法研究进展 无论是监督分类还是非监督分类, 都是依据地物的光

您可能关注的文档

文档评论(0)

管理学科 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档