基于灰度图像的阈值分割改进方法 开 题 报 告1.doc

基于灰度图像的阈值分割改进方法 开 题 报 告1.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于灰度图像的阈值分割改进方法 开 题 报 告1.doc

毕 业 设 计 开 题 报 告 基于灰度图像的阈值分割改进方法 系 别: 班 级: 学生姓名: 指导教师: 2011 年 11 月22日 毕业设计开题报告 课题题目 基于灰度图像的阈值分割改进方法 课题性质 A B C D E ■ □ □ □ □ 课题来源 A B C D □ □ ■ □ 成果形式 A B C D E ■ □ □ ■ □ 同组同学 无 开题报告内容 见附页 指导教师意见(课题难度是否适中、工作量是否饱满、进度安排是否合理、工作条件是否具备等) 指导教师签名: 年 月 日 专家组及学院意见(选题是否适宜、各项内容是否达到毕业设计(论文)大纲要求、整改意见等) 专家组成员签字: 教学院长(签章): 年 月 日 附页: 基于灰度图像的阈值分割改进方法 一、研究的目的 通常人们只对图像的某个部位感兴趣,为了能够把感兴趣的部分提取出来,就得对图像进行分割。图像分割就是把图像分成一些具有不同特征而有意义的区域,以便进一步的图像分析和理解。图像增强就是突出人们感兴趣有用的部分,或者是改善图像的质量,使它尽可能的逼近原图像。本论文分析了传统的灰度阈值图像分割,即双峰法、迭代法和最大类间方差法在细节部分分割上的缺点,然后,结合图像增强中的微分梯度,对原有图像的细节进行锐化增强,然后在使用这三种方法进行分割,得到的分割结果和传统的分割方法得到的结果进行比较,该算法确实达到了改善分割后图像细节的效果。 本算法在matlab2008环境下进行了实现,实验结果表明,与传统的阈值分割方法相比,本文算法不仅克服了传统阈值分割方法的不足,而且还对复杂灰度图像的细节部分具有较好的分割效果,为图像分割方法的改进提供了技术支持。 二、研究背景与意义 数字图像处理的基础是图像分割,图像分割同时也是进行计算机自动识别和人工智能的桥梁,长期以来图像分割一直都是数字图像处理领域的一个经典难题。经典的图像分割算法,诸如:直方图分割与阈值分割的方法具有实现简单、计算量小、性能较稳定等特点。通常,它们是利用图像的灰度直方图的分布特征,找出灰度直方图分布的两波峰之间的波谷,选定恰当的阈值将图像分割开,然而这种分割方法依赖于图像灰度的分布,对灰度分布不呈双峰特征或复杂背景的图像,这种方法往往会造成错误,并且有些细节不能很好的显示出来。 所以论文提出了一种改进方法—图像增强的分割改进方法,通过图像增强中的微分梯度,对原有图像的细节进行锐化增强,从而达到改善分割后图像细节的效果。这对我们使用灰度阈值分割方法分割图像提供了技术支持,并且能很好地克服灰度阈值分割方法的缺点。 三.基于灰度图像的阈值分割方法 阈值处理是一种区域分割技术,将灰度根据主观愿望分成两个或多个等间隔或不等间隔灰度区间,它主要是利用图像中要提取的目标物体和背景在灰度上的差异,选择一个合适的阈值,通过判断图像中的每一个像素点的特征属性是否满足阈值的要求来确定图像中该像素点属于目标区还是应该属于背景区域,从而产生二值图像。 由于双峰法图像分割、迭代法、最大类间方差法是灰度图像阈值分割分割中比较常用的方法,所以在matlab软件下,使用这两种方法来分割图像,通过分割后的结果找到当中的不足,然后使用笔者提出的改进方法和它们做比较,得出改进方法是可行的且达到预期效果的。 四. 基于图像增强的分割改进算法 图像增强就是按照人们主观上对理想图像的要求,对原有图像进行锐化或平滑处理,使之达到改善图像质量的实际应用要求。本图像为增强图像的细节就得将原始图像进行锐化,图像的边缘细节与图像上梯度的整体强度有关,图像边缘越强,图像的细节效果越明显。 梯度图像能够更好地适应图像边缘的变化快慢,边缘检测也常用各种微分算子来提取图像的边界。图像边界信息更多地是高频信号,这与梯度有更大的关系,因此对保存有完整图像边界信息的图像进行梯度锐化后分割更加合理。 假设图像在处的梯度定义为: 由于梯度是一个矢量,所以起其方向和在该方向上的大小为: 对于一幅图像中突出的,变化快的边缘区,其梯度值较大;而对与非边缘信号,其梯度值较小。这样由上面的梯度算子就可以增强图像的细节部分,需保留低频

文档评论(0)

书屋 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档