基于matlab的图像锐化 文献综述.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
x学院毕业论文(设计) 文 献 综 述 题 目:图像锐化算法的研究与实现 姓 名: xxx 学 号: 080502221 系 别: 物理与电子信息工程系 专 业: 电子信息科学与技术 年 级: 200x级 指导老师: xxx 2011年 11月18日 文献综述 1. 引言 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代 ,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。图像处理的基本目的是改善图像的质量。它以人为对象,改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常见的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天。生物医学工程、工业检测、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注意、前景远大的新型科学。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理更高、更深层次发展[1]。 2. 图像锐化处理的现状和研究方法 数字图像经过转换和传输后,难免会产生模糊。图像锐化的主要目的在于补偿图像边缘轮廓、突出图像的边缘信息以使图像显得更为清晰,从而符合人类的观察习惯。图像锐化的实质是增强原图像的高频分量[2]。边缘和轮廓一般位于灰度突变的地方,因此和自然地利用灰度差分提取出来。由于边缘和轮廓在一幅图中常常具有任意方向,而差分运算是有方向性的,因此和差分方向一致的边缘和轮廓便检测不出来[3]。因而希望找到一些各向同性的检测算子,它们对任意方向的边缘和轮廓都有检测能力,具有这钟性质的锐化算子有Roberts算子、Prewitt算子、Sobel算子、Laplacian算子等微分算子。本次设计就是利用Matlab实现图像边缘检测,具体的是利用Matlab针对Roberts算子、Prewitt算子、Sobel算子、Laplacian算子实现边缘检测的功能[4]。 MATLAB简介 MATLAB全称Matrix Laboratory(矩阵实验室),最早初由美国Cleve Moler博士在20世纪70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack和Eispack组成。它用于数学、信息工程、摇感、机械工程、计算机等专业。它的推广得到各个领域专家的关注,其强大的扩展功能为各个领域应用提供了基础,各个领域的专家相继推出MATLAB工具箱,而且工具箱还在不断发展,借助于这些工具箱,各个层次的研究人员可直接、直观、方便地进行工作,从而节省大量的时间[5]。目前,MATLAB语言已经成为科学计算、系统仿真、信号与图像处理的主流软件。本文主要从MATLAB图像处理方面做应用。 4. MATLAB对图像处理的特点 MATLAB全称Matrix Laboratory(矩阵实验室),是一种主要用于矩阵数据值计算的软件,因其在矩阵运算上的特点,使得MATLAB在处理图像上具有独特优势,理论上讲,图像是一种二维的连续函数,而计算机在处理图像数字时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样个量化的过程。二维图像均匀采样,课得到一副离散化成N×N样本的数字图像,该数字图像是一个整数列阵,因而用矩阵来描述该数字图像是最直观最简便的[6]。 5.图像锐化概述 数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像[7]。 数字图像的锐化可分为线性锐化滤波和非线性锐化滤波。如果输出像素是输入像素领域像素的线性组合则称为线性滤波,否则称为非线性滤波。 5.1 线性锐化滤波器 线性高通滤波器是最常用的线性锐化滤波器。这种滤波器必须满足滤波器的中心系数为正数,其他系数为负数。 5.2 非线性锐化滤波器 非线性锐化滤波就是使用微分对图像进行处理,以此来锐化由于邻域平均导致的模糊图像。无方向一阶微分锐化算子有: 5.2.1 Roberts算子 图像处理中最常用的微分是利用图y像沿某个方向上的灰度变化率,即原图像函数的梯度。 (Roberts算子)[8]梯度定义如下: (1) 梯度模的表达式如下:

您可能关注的文档

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档