- 1、本文档共26页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
GdZn, NdCeFe系室温磁致冷材料的研究1 前 言随着科学技术的发展,制冷技术已经深入到工业、农业、军事及人们日常生活的各个领域。但传统的气体压缩制冷技术本身存在两大缺陷:其一,气体制冷技术因使用压缩机,导致效率低、能耗大;其二,压缩制冷多采用氟利昂及氨等气体工质,对环境造成污染或破坏,特别是氟利昂工质,因其破坏臭氧层,严重威胁地球环境。一方面,人们积极开发新的不破坏大气臭氧层的氟利昂替代工质——无氟气体工质,目前替代工质已经开始生产应用,该类工质的最大优点在于不破坏大气臭氧层,但是大多具有潜在的温室效应,且仍不能克服压缩制冷技术能耗大的缺陷,不是根本解决办法。另一方面,人们积极探寻一些全新的制冷技术 ,如半导体制冷、磁制冷等。半导体制冷因电耗太大,多用于医药及医疗器械等小规模冷冻;而磁制冷技术,因自身的优点及近年来的突破性进展,已引起了世界各国的广泛关注。与传统压缩制冷相比,磁制冷具有如下竞争优势:其一,无环境污染和破坏,由于工质本身为固体材料以及在循环回路中可用(加防冻剂的)水来作为传热介质,这就消除了因使用氟利昂、氨及碳氢化合物等制冷剂所带来的破坏臭氧层、有毒、易泄漏、易燃、易爆等损害环境的缺陷;其二,高效节能,磁制冷的效率可达到卡诺循环的 30%~ 60%,而气体压缩制冷一般仅为 5%~ 10%,节能优势显著;另外,磁制冷技术还具有尺寸小、重量轻、运行稳定可靠、寿命长等优势。因此,磁制冷技术被认为是高科技绿色制冷技术。2 文献综述2.1 磁制冷技术2.1.1 磁制冷技术的基本原理磁制冷是一种以磁性材料为工质的全新的制冷技术,其基本原理是借助磁制冷材料的磁热效应(Magnetocaloric Effect,MCE),即磁制冷材料等温磁化时向外界放出热量,而绝热退磁时从外界吸收热量,达到制冷目的。图 1是磁制冷原理的简单示意图[1]。图 1 磁制冷原理示意图磁热效应是磁性材料的一种固有特性,从热力学上来说,它是通过外力(磁场)使磁熵发生改变,从而形成一个温度变化,当施加外磁场时材料的磁熵降低并放出热量,反之,当去除外磁场时,材料的磁熵升高并吸收热量。以下内容就是根据热力学基本理论对磁热效应的解释[2,3,4]。如磁性材料在磁场强度为H,温度为T,压力为P的体系中,其热力学性质可用吉布斯自由能G(T、H、P)来描述。熵 磁化强度 体积 表征MCE的主要参量是熵,其全微分为:在恒压、恒磁场条件下,很方便地去定义比热: 和体积膨胀系数:从方程(1)与(2)可得: 在绝热过程中dS=0,将方程(5)、(6)、(7)代人方程(4)得: 实际上方程(8)中三项分别代表电子熵变ΔSe,磁熵变ΔSM和晶格熵变ΔSl。磁制冷换热器操作过程一般要求材料处于绝热-等压状态,所以方程(8)中dP=0,即可得: 根据一般材料的基本性质,上式中恒为负值,所以当对材料磁化时dH0,则dT0,材料升温;反之退磁时dH0,则dT0,材料降温。若在等温过程中,就对应的放热或吸热。2.1.2 磁制冷技术的发展状况磁制冷的研究可追溯到19世纪末,1881年Warburg首先观察到金属铁在外加磁场中的热效应,1895年P Langeviz发现了磁热效应。1926年Debye、1927年Giauque两位科学家分别从理论上推导出可以利用绝热去磁制冷的结论后,磁制冷技术得以逐步发展。1933年Giauque等人以顺磁盐Gd2(SO4)3·8H2O为工质成功获得了1K以下的超低温,此后,许多顺磁盐在超低温领域得到了广泛的应用。50年代关于绝热退磁的研究已很普遍,1954年Herr?等人制造出第一台半连续的磁制冷机,1966年荷兰的Van Geuns研究了顺磁材料磁热效应的应用(1K以下),提出并分析了磁Stirling循环[5]。此后,磁制冷技术的研究逐年升温,并由低温制冷向高温制冷发展。但是,磁制冷技术在室温附近的应用却存在理论上的困难。1976年Brown[6]首先采用金属Gd为磁制冷材料,在7T磁场下进行了室温磁制冷的实验,开创了室温磁制冷技术的新纪元。从此,室温附近的磁制冷技术的研究与开发才开始逐渐活跃起来。1996年美国宇航公司(Astronautics Corp. of America)与美国国家能源部在依阿华大学所设的国家实验室(Ames Laboratory)合作,完成了第一台以金属Gd为制冷工质、以超导磁体(磁场强度达5T) 为磁场源、工作于室温附近的磁制冷样机,样机示意图如图2[7]。该样机从1996年12月开始,连续工作了1200小时,运转过程的测试结果表明,它的效率能达到50%~60%。而传统的气体压缩制冷
文档评论(0)