《计量经济学》期末考试复习资料.docVIP

《计量经济学》期末考试复习资料.doc

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《计量经济学》期末考试复习资料 第一章 绪论 参考重点: 计量经济学的一般建模过程 第一章课后题(1.4.6) 1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别? 答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。 计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。 4.建立与应用计量经济学模型的主要步骤有哪些? 答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。 6.模型的检验包括几个方面?其具体含义是什么? 答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟定的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。 第二章 经典单方程计量经济学模型:一元线性回归模型 参考重点: 1.相关分析与回归分析的概念、联系以及区别? 2.总体随机项与样本随机项的区别与联系? 3.为什么需要进行拟合优度检验? 4.如何缩小置信区间?(P46) 由上式可以看出(1).增大样本容量。样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小。(2)提高模型的拟合优度。因为样本参数估计量的标准差和残差平方和呈正比,模型的拟合优度越高,残差平方和应越小。 5.以一元线性回归为例,写出β0的假设检验 1).对总体参数提出假设 H0:(0=0, H1:(0(0 2)以原假设H0构造t统计量, 3)由样本计算其值 4)给定显著性水平(,查t分布表得临界值t (/2(n-2) 5)比较,判断 若 |t| t /2(n-2),则拒绝H0 ,接受H1 ; 若 |t| t (/2(n-2),则拒绝H1 ,接受H0 ; 上届重点: 一元线性回归模型的基本假设、随机误差项产生的原因、最小二乘法、参数经济意义、决定系数、第二章PPT里的表(中国居民人均消费支出对人均GDP的回归)、t检验(△(平方)代表意义;△(平方)的认识)、能够读懂Eviews输出的估计结果 第二章课后题(1.3.9.10) 1.为什么计量经济学模型的理论方程中必须包含随机干扰项? (经典模型中产生随机误差的原因) 答:计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式。由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响。这样,理论模型中就必须使用一个称为随机干扰项的变量宋代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性。 3.一元线性回归模型的基本假设主要有哪些?违背基本假设的模型是否不可以估计? 答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有:解释变量是非随机的,若是随机变量,则与随机干扰项不相关。实际上,这些假设都是针对普通最小二乘法的。 在违背这些基本假设的情况下,普通最小二乘估计量就不再是最佳线性无偏估计量,因此使用普通最小二乘法进行估计己无多大意义。但模型本身还是可以估计的,尤其是可以通过最大似然法等其他原理进行估计。 假设1. 解释变量X是确定性变量,不是随机变量; 假设2. 随机误差项(具有零均值、同方差和不序列相关性: E((i)=0 i=1,2, …,n Var ((i)=((2 i=1,2, …,n Cov((i, (j)=0 i≠j i,j= 1,2, …,n 假设3. 随机误差项(与解释变量X之间不相关: Cov(Xi, (i)=0 i=1,2, …,n 假设4. (服从零均值、同方差、零协方差的正态分布 (i~N(0, ((2 ) i=1,2, …,

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档