半导体传感器工作原理.ppt

  1. 1、本文档共68页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
1. 负特性湿敏半导瓷的导电机理 由于水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸附时,就有可能从半导瓷表面俘获电子,使半导瓷表面带负电。如果该半导瓷是P型半导体,则由于水分子吸附使表面电势下降,将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。若该半导瓷为N型,则由于水分子的附着使表面电势下降,如果表面电势下降较多,不仅使表面层的电子耗尽, 同时吸引更多的空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度,出现所谓表面反型层,这些空穴称为反型载流子。 它们同样可以在表面迁移而表现出电导特性。因此, 由于水分子的吸附,使N型半导瓷材料的表面电阻下降。 由此可见,不论是N型还是P型半导瓷,其电阻率都随湿度的增加而下降。图9-9表示了几种负特性半导瓷阻值与湿度之关系。 图 9-9 几种半导瓷湿敏负特性 图 9-10 Fe3O4半导瓷的正湿敏特性 2. 正特性湿敏半导瓷的导电机理 正特性湿敏半导瓷的导电机理的解释可以认为这类材料的结构、电子能量状态与负特性材料有所不同。当水分子附着半导瓷的表面使电势变负时, 导致其表面层电子浓度下降,但这还不足以使表面层的空穴浓度增加到出现反型程度,此时仍以电子导电为主。于是,表面电阻将由于电子浓度下降而加大,这类半导瓷材料的表面电阻将随湿度的增加而加大。如果对某一种半导瓷,它的晶粒间的电阻并不比晶粒内电阻大很多,那么表面层电阻的加大对总电阻并不起多大作用。不过,通常湿敏半导瓷材料都是多孔的,表面电导占的比例很大,故表面层电阻的升高, 必将引起总电阻值的明显升高。 但是,由于晶体内部低阻支路仍然存在,正特性半导瓷的总电阻值的升高没有负特性材料的阻值下降得那么明显。图9-10给出了Fe3O4正特性半导瓷湿敏电阻阻值与湿度的关系曲线。从图9-9与图9-10可以看出,当相对湿度从0%RH变化到100%RH时,负特性材料的阻值均下降3个数量级,而正特性材料的阻值只增大了约一倍。 3. 典型半导瓷湿敏元件 (1)MgCr2O4-TiO2湿敏元件 氧化镁复合氧化物-二氧化钛湿敏材料通常制成多孔陶瓷型“湿—电”转换器件,它是负特性半导瓷,MgCr2O4为P型半导体,它的电阻率低,阻值温度特性好, 结构如图9-11所示,在MgCr2O4-TiO2陶瓷片的两面涂覆有多孔金电极。 金电极与引出线烧结在一起,为了减少测量误差,在陶瓷片外设置由镍铬丝制成的加热线圈,以便对器件加热清洗, 排除恶劣气氛对器件的污染。整个器件安装在陶瓷基片上, 电极引线一般采用铂—铱合金。  图9-11 MgCr2O4-TiO2陶瓷 图9-12 MgCr2O4-TiO2陶瓷湿度传感器湿度传感器的结构相对湿度与电阻的关系 (2)ZnO-Cr2O3陶瓷湿敏元件 ZnO-Cr2O3湿敏元件的结构是将多孔材料的金电极烧结在多孔陶瓷圆片的两表面上,并焊上铂引线,然后将敏感元件装入有网眼过滤的方形塑料盒中用树脂固定,其结构如图9-13所示。   ZnO-Cr2O3传感器能连续稳定地测量湿度,而无须加热除污装置,因此功耗低于0.5W,体积小,成本低,是一种常用测湿传感器。 图9-13 ZnO-Cr2O3陶瓷湿敏传感器结构 (3)四氧化三铁(Fe3O4)湿敏器件四氧化三铁湿敏器件由基片、电极和感湿膜组成,器件构造如图9-14 所示。基片材料选用滑石瓷,光洁度为10~11,该材料的吸水率低,机械强度高,化学性能稳定。基片上制作一对梭状金电极,最后将预先配制好的Fe3O4胶体液涂覆在梭状金电极的表面,进行热处理和老化。Fe3O4胶体之间的接触呈凹状,粒子间的空隙使薄膜具有多孔性, 当空气相对湿度增大时,Fe3O4胶膜吸湿,由于水分子的附着,强化颗粒之间的接触,降低粒间的电阻和增加更多的导流通路, 所以元件阻值减小。当处于干燥环境中,胶膜脱湿,粒间接触面减小,元件阻值增大。当环境温度不同时, 涂覆膜上所吸附的水分也随之变化,使梭状金电极之间的电阻产生变化。图9-15和图9-16分别为国产MCS型Fe3O4湿敏器件的电阻-湿度特性和温度-湿度特性。 图9-14 Fe3O4湿敏元件构造 图9-15 MCS型Fe3O4湿敏器件的 图 9-16 MCS型Fe3O4湿敏器件的 Fe3O4湿敏器件在常温、常湿下性能比较稳定,有较强的抗结露能力,测湿范围广,有较为一致的湿敏特性和较好的温度-湿度特性,但器件有较明显的湿滞现象,响应时间长,吸湿过程(60%RH→98%RH)需要2min,脱湿过程(98%RH→12%RH)需5~7 min。 9.3 色 敏 传 感 器 9.3

文档评论(0)

qujim + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档