- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Matlab基于VQ的
Summary
Abstract: 语者识别即为Contents
Introduction……………………………………………………..3
1.1语者识别的概念…………………………………………….3
1.2特征参数的提取…………………………………………….4
1.3用矢量量化聚类法生成码本……………………………….4
1.4VQ的说话人识别 ……………………………………….....5
2.The Program…………………………………………………….6
2.1函数关系…………………………………………………….6
2.2代码说明…………………………………………………….6
2.2.1函数mfcc……………………………………………….6
2.2.2函数disteu……………………………………………...6
2.2.3函数vqlbg……………………………………………....7
2.2.4函数test…………………………………………………8
2.2.5函数testDB……………………………………………...8
2.2.6 函数train……………………………………………….9
2.2.7函数melfb……………………………………………….9
3.Results Discussion …………………………………………….10
4.Further Work……………………………………………………..12
1.Introduction
关于语者识别:在生物辨识技术中,语者辨识是利用人类最自然的口语表达作为辨识身分的依据。语者辨识一般分为语者识别及语者确认,前者是要辨识说话者是谁,后者则是判断说话的人是不是他所宣称的使用者,本项目的研究主题是后者。语者确认常被视为一个假说测定问题,利用似然比例测试方法来解:空假说表示说话者为真正的使用者,替代假说表示其为冒充者。我们可以收集特定使用者的语音数据来训练空假说模型,但替代假说牵涉未知的冒充者,较难模型化。针对此点,传统的作法是收集很多人的语音,训练一个通用背景模型,或是几位与目标使用者声音相似的人的语音,训练数个背景模型,再利用取极大值、取极小值、算数平均或几何平均等方法来结合个别的模型分数。
基于VQ的语者识别系统系统模型
基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。
语音识别系统结构框图如图1所示。
图1 语音识别系统结构框图
1.1语者识别的概念
语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。
1.2特征参数的提取
对于特征参数的选取,我们使用mfcc的方法来提取。MFCC参数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数。
MFCC参数的提取过程如下:
1. 对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息。
设语音信号的DFT为:
(1)
其中式中x(n)为输入的语音信号,N表示傅立叶变换的点数。
2. 再求频谱幅度的平方,得到能量谱。
3. 将能量谱通过一组Mel尺度的三角形滤波器组。
我们定义一个有M个滤波器的滤波器组(滤波器的个数和临界带的个数相近),采用的滤波器为三角滤波器,中心频率为f(m),m=1,2,3,···,M
本系统取M=100。
4. 计算每个滤波器组输出的对数能量。
(2)
其中为三角滤波器的频率响应。
5. 经过离散弦变换(D
文档评论(0)