计量经济学(庞皓)_第二章_简单线性回归模型.ppt

计量经济学(庞皓)_第二章_简单线性回归模型.ppt

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共77页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,模型拟合优度越好。反之可决系数越小,说明模型对样本观测值的拟合程度越差。 可决系数的特点: ●可决系数取值范围: ●随抽样波动,样本可决系数 是随抽样而变 动的随机变量 ●可决系数是非负的统计量 * 可决系数的作用 联系:数值上可决系数是相关系数的平方 * 可决系数与相关系数的关系 区别: 可决系数 相关系数 是就模型而言 是就两个变量而言 说明解释变量对被解释 说明两变量线性依存程度 变量的解释程度 度量不对称的因果关系 度量对称的相关关系 取值 0≦ ≦1 取值 -1≦r≦1 有非负性 可正可负 * * 第四节? 回归系数的区间估计和假设检验 为什么要作区间估计? 运用OLS法可以估计出参数的一个估计值,但OLS估计只是通过样本得到的点估计,它不一定等于真实参数,还需要寻求真实参数的可能范围,并说明其可靠性。 为什么要作假设检验? OLS 估计只是用样本估计的结果,是否可靠? 是否抽样的偶然结果呢?还有待统计检验。 区间估计和假设检验都是建立在确定参数估计值 概率分布性质的基础上。 * 一、OLS估计的分布性质 基本思想 是随机变量,必须确定其分布性质才可能进行区间估计和假设检验 怎样确定 的分布性质呢? 是服从正态分布的随机变量,决定 了 也是服从正态分布的随机变量; 是 的线性函数,决定了 也服从正态分布 正态 正态 正态 只要确定 的期望和方差,即可确定 的分布性质 线性特征 (线性估计的重要性) * ● 的期望: (已证明是无偏估计) ● 的方差和标准误差 (证明见P39、P40) (标准误差是方差的平方根) 注意:以上各式中 均未知,但是个常数,其余均是已知的样本观测值,这时 和 都不是随机变量。 的期望和方差 * 基本思想: 是 的方差,而 不能直接观测,只能从由样本得到的 去获得有关 的某些信息,去对 作出估计。 可以证明(见附录2.2)其无偏估计为 (这里的n-2为自由度, 即可自由变化的样本观测值个数) 注意区别: 是未知的确定的常数; 是由样本信息估计的,是个随机变量 对随机扰动项方差 的估计 基本思想: 对参数作出的点估计是随机变量,虽然是无偏估计,但还不 能说明这种估计的可靠性和精确性。如果能找到包含真实参数 的一个范围,并确定这样的范围包含参数真实值的可靠程度, 将是对真实参数更深刻的认识。 方法:如果在确定参数估计式概率分布性质的基础上,可找到两 个正数δ和 ,能使得这样的区间 包含真实 的概率为 ,即 这样的区间称为所估计参数的置信区间。 讨论:“如果已经得出了 的特定估计值,并确定了某个置信区间,这说明真实参数落入这个区间的概率为1-α ”。这种说法对吗 ? * 二、回归系数的区间估计 方法:用无偏估计 去代替未知的 ,由于样本容量较 小,“标准化变量” t (统计量)不再服从正态分布,而服从 t 分布。 这时可用 t 分布去建立参数估计的置信区间。选定α,查 t 分 布表得显著性水平为 ,

文档评论(0)

共享文档 + 关注
实名认证
内容提供者

二级建造师持证人

该用户很懒,什么也没介绍

领域认证该用户于2023年10月07日上传了二级建造师

1亿VIP精品文档

相关文档