- 1、本文档共113页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SPSS.教程第章.ppt
第6章 SPSS的非参数检验 在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。 SPSS 中进行非参数检验由【Analyze(分析)】菜单中的【Nonparametric Tests(非参数检验)】菜单项导出。其中包括以下命令。 ● Chi-square test: 卡方检验。 ● Binomial test: 二项分布检验。 ● Runs test: 游程检验。 ● 1-Simple K-S test: 单样本K-S检验。 ● 2 Independent Sample test: 两个独立样本非参数检验。 ● K Independent Samples test: 多个独立样本非参数检验。 ● 2 Related Sample test: 两个相关样本非参数检验。 ● K Related Sample test: 多个相关样本非参数检验。 6.1 非参数检验概述 6.1.1 非参数检验的提出 非参数检验是不依赖总体分布的统计推断方法。它是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数而得名。这类方法的假定前提比参数假设检验方法少得多,也容易满足,适用于计量信息较弱的资料且计算方法也简便易行,所以在实际中有广泛的应用。 6.1.2 非参数检验的特点 和参数方法相比,非参数检验方法的优势如下: (1)稳健性。因为对总体分布的约束条件大大放宽,不至于因为对统计中的假设过分理想化而无法切合实际情况,从而对个别偏离较大的数据不至于太敏感。 (2)对数据的测量尺度无约束,对数据的要求也不严格,什么数据类型都可以做。 (3)适用于小样本、无分布样本、数据污染样本、混杂样本等。 表6-1 参数检验和非参数检验的效率比较 6.2 SPSS 在卡方检验中的应用 1.使用目的 卡方检验(Chi-Squar Test)也称为卡方拟合优度检验,是K.Pearson给出的一种最常用的非参数检验方法。它用于检验观测数据是否与某种概率分布的理论数值相符合,进而推断观测数据是否是来自于该分布的样本的问题。 2.基本原理 进行卡方检验时,首先提出零假设 :样本X来自的总体分布服从期望分布或某一理论分布。接着,利用实际观测值的频数与理论的期望频数之间的差异来构造检验统计量,它描述了观察值和理论值之间的偏离程度。 3.软件使用方法 SPSS会自动计算出χ2统计量及对应的相伴概率P值。 6.2.2 卡方检验的SPSS操作详解 Step01:打开主菜单 选择菜单栏中的【Analyze(分析)】 →【Nonparametric Tests(非参数检验)】→【Legacy Dialogs(旧对话框)】→【Chi-Square(卡方)】命令,弹出【Chi-Square Test(卡方检验)】对话框。 Step02:选择检验变量 在【Chi-Square Test(卡方检验)】对话框左侧的候选变量列表框中选择一个或几个变量,将其添加至【Test Variable List(检验变量列表)】列表框中,表示需要进行进行卡方检验的变量。 Step03:确定检验范围 在【Expected Range(期望全距)】选项组中可以确定检验值的范围,对应有两个单选项。 Step04:选择期望值 在【Expected Values(期望值)】选项组中可以指定期望值 ,对应有两个单选项。 Step05:选择计算精确概率 单击【Exact】按钮,弹出【Exact Tests(精确检验)】对话框,该对话框用于选择计算概率P值的方法 。 Step06:其他选项选择 单击【Options】按钮,弹出【Options(选项)】对话框,该对话框用于指定输出内容和关于缺失值的处理方法. 6.2.3 实例图文分析:人员结构的调动 1. 实例内容 某公司经营多年,形成了一套成熟的企业文化和管理体系,例如根据多年的运营经验,经理层、监察员、办事员三种职务类别人员比例大约在15:5:80为宜,这样运行效率最高。目前公司进行人事调整,公司人员结构发生变动,有员工担心是否人事调整已经导致职务类型比例的失调。请利用数据文件6-1.sav来解决该问题。 三种职务的期望构成比为15%、5%和80%。而目前样本中观察到的三种职务的人数比为84:27
文档评论(0)