- 1、本文档共62页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
专业英语3.ppt
The Time Value of Money Chapter 3 Chapter Outline Future Value and Compounding Present Value and Discounting More on Present and Future Values Future and Present Values of Multiple Cash Flows Valuing Level Cash Flows: Annuities and Perpetuities Loan Types and Loan Amortization Basic Definitions Present Value – earlier money on a time line Future Value – later money on a time line Interest rate – “exchange rate” between earlier money and later money Discount rate Cost of capital Opportunity cost of capital Required return Future Values Suppose you invest $1000 for one year at 5% per year. What is the future value in one year? Interest = 1000(.05) = 50 Value in one year = principal + interest = 1000 + 50 = 1050 Future Value (FV) = 1000(1 + .05) = 1050 Suppose you leave the money in for another year. How much will you have two years from now? FV = 1000(1.05)(1.05) = 1000(1.05)2 = 1102.50 Future Values: General Formula FV = PV(1 + r)t FV = future value PV = present value r = period interest rate, expressed as a decimal T = number of periods Future value interest factor = (1 + r)t Effects of Compounding Simple interest Compound interest Consider the previous example FV with simple interest = 1000 + 50 + 50 = 1100 FV with compound interest = 1102.50 The extra 2.50 comes from the interest of .05(50) = 2.50 earned on the first interest payment Figure 3.1 Figure 3.2 Future Values – Example 2 Suppose you invest the $1000 from the previous example for 5 years. How much would you have? FV = 1000(1.05)5 = 1276.28 The effect of compounding is small for a small number of periods, but increases as the number of periods increases. (Simple interest would have a future value of $1250, for a difference of $26.28.) Future Values – Example 3 Suppose you had a relative deposit $10 at 5.5% interest 200 years ago. How much would the investment be worth today? FV = 10(1.055)200 = 447,189.84 What is the effect of compounding? Simple interest = 10 + 200(10)(.055) = 210.55 Compounding added
文档评论(0)