网站大量收购独家精品文档,联系QQ:2885784924

Latent Semantic Indexing.ppt

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Latent Semantic Indexing.ppt

Latent Semantic Indexing Introduction to Artificial Intelligence COS302 Michael L. Littman Fall 2001 Administration Example analogies… And-or Proof out(x) = g(sumk wk xk) w1=10, w2=10, w3=-10 x1 + x2 + ~x3 Sum for 110? Sum for 001? Generally? b=110, 20 -10 sumi |bi-xi| What happens if we set w0=10? w0 =-15? LSI Background Reading Landauer, Laham, Foltz (1998). Learning human-like knowledge by Singular Value Decomposition: A Progress Report. Advances in Neural Information Processing Systems 10, (pp. 44-51) /papers/nips.ps Outline Linear nets, autoassociation LSI: Cross between IR and NNs Purely Linear Network What Does It Do? out(x) = sumj (sumi xi Wij) Uj = sumi xi (sumj Wij Uj ) Can Other Layers Help? Autoassociator x1 x2 x3 x4 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 Applications Autoassociators have been used for data compression, feature discovery, and many other tasks. U matrix encodes the inputs into k features How train? SVD Singular value decomposition provides another method, from linear algebra. Training data M is nxm (input features by examples) M = U S2k VT UTU = I, VTV = I, S diagonal Dimension Reduction Finds least squares best U (nxk, free k) Rows of U map input features to encoded features (instance is sum) Closely related to symm. eigenvalue decomposition, factor analysis principle component analysis Subroutine in many math packages. SVD Applications Eigenfaces Handwriting recognition Text applications… LSI/LSA Latent semantic indexing is the application of SVD to IR. Latent semantic analysis is the more general term. Features are words, examples are text passages. Latent: Not visible on the surface Semantic: Word meanings Running LSI Learns new word representations! Trained on: 20,000-60,000 words 1,000-70,000 passages Use k=100-350 hidden units Similarity between vectors computed as cosine. Step by Step Mij rows are words, columns are passages: filled w/ counts Transformation of matrix: SVD computed: M=USVT Best k

文档评论(0)

gshshxx + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档