15 Linear Regression.ppt

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
15 Linear Regression.ppt

15: Linear Regression Expected change in Y per unit X Introduction (p. 15.1) X = independent (explanatory) variable Y = dependent (response) variable Use instead of correlation when distribution of X is fixed by researcher (i.e., set number at each level of X) studying functional dependency between X and Y Illustrative data (bicycle.sav) (p. 15.1) Same as prior chapter X = percent receiving reduce or free meal (RFM) Y = percent using helmets (HELM) n = 12 (outlier removed to study linear relation) Regression Model (Equation) (p. 15.2) How formulas determine best line (p. 15.2) Distance of points from line = residuals (dotted) Minimizes sum of square residuals Least squares regression line Formulas for Least Squares Coefficients with Illustrative Data (p. 15.2 – 15.3) Alternative formula for slope Interpretation of Slope (b) (p. 15.3) b = expected change in Y per unit X Keep track of units! Y = helmet users per 100 X = % receiving free lunch e.g., b of –0.54 predicts decrease of 0.54 units of Y for each unit X Predicting Average Y ? = a + bx Predicted Y = intercept + (slope)(x) HELM = 47.49 + (–0.54)(RFM) What is predicted HELM when RFM = 50? ? = 47.49 + (–0.54)(50) = 20.5 Average HELM predicted to be 20.5 in neighborhood where 50% of children receive reduced or free meal What is average Y when x = 20? ? = 47.49 +(–0.54)(20) = 36.7 Confidence Interval for Slope Parameter (p. 15.4) 95% confidence Interval for ? = where b = point estimate for slope tn-2,.975 = 97.5th percentile (from t table or StaTable) seb = standard error of slope estimate (formula 5) Illustrative Example (bicycle.sav) 95% confidence interval for ? = –0.54 ± (t10,.975)(0.1058) = –0.54 ± (2.23)(0.1058) = –0.54 ± 0.24 = (–0.78, –0.30) Interpret 95% confidence interval Model: Point estimate for slope (b) = –0.54 Standard error of slope (seb) = 0.24 95% confidence interval for ? = (–0.78, –0.30) Interpretation: slope estimate = –0.54 ± 0.24 We are 95% confident the slope para

文档评论(0)

gsgtshb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档