ICS 278 Data MiningLecture 15 Text Classification.ppt

ICS 278 Data MiningLecture 15 Text Classification.ppt

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ICS 278 Data MiningLecture 15 Text Classification.ppt

ICS 278: Data Mining Lecture 15: Text Classification Padhraic Smyth Department of Information and Computer Science University of California, Irvine RoadMap for Lectures Lecture 15 (today): text classification Lectures 16, 17, 18, 19: Unsupervised learning from text – clustering and topic modeling Recommender systems Credit scoring applications Pattern-finding algorithms Lecture 20 Thursday June 8th (2 weeks from Thursday) 5-minute project summary from each student More details on format to come later….. Text Classification Text classification has many applications Spam email detection Automated tagging of streams of news articles, e.g., Google News Automated creation of Webtaxonomies Data Representation “Bag of words” most commonly used: either counts or binary Can also use “phrases” for commonly occuring combinations of words Classification Methods Na?ve Bayes widely used (e.g., for spam email) Fast and reasonably accurate Support vector machines (SVMs) Typically the most accurate method in research studies But more complex computationally Logistic Regression (regularized) Not as widely used, but can be competitive with SVMs (e.g., Zhang and Oles, 2002) Further Reading on Text Classification Web-related text mining in general S. Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data, Morgan Kaufmann, 2003. See chapter 5 for discussion of text classification General references on text and language modeling Foundations of Statistical Language Processing, C. Manning and H. Schutze, MIT Press, 1999. Speech and Language Processing: An Introduction to Natural Language Processing, Dan Jurafsky and James Martin, Prentice Hall, 2000. SVMs for text classification T. Joachims, Learning to Classify Text using Support Vector Machines: Methods, Theory and Algorithms, Kluwer, 2002 Common Data Sets used for Evaluation Reuters 10700 labeled documents 10% documents with multiple class labels Yahoo! Science Hierarchy 95 disjoint classes with 13,598 pa

文档评论(0)

gsgtshb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档