理工类研究生开题报告范文.docVIP

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
理工类研究生开题报告范文.doc

××××××大学 ( 博 )士学位论文开题报告表 班 学 号: 200811202004 姓 名: 周亿兵 论文题目: 聚类算法研究 及其在IDS中的应用 指导教师: ×××× 学科专业: 信息安全 所在学院: ××××××××学院 ××××××××××研究生院制表 2008年11月22日填 填 表 说 明 1.研究生须认真填写本表相关内容。 2.凡所列栏目填写不下的,可以另加附页。 3.本表采取双面复制(复印),且保持原格式不变,纸张限用 A4(页边距为上、下:2.5cm, 左为2 .6cm,右为2 .1cm;字体为宋体小四,行间距为18磅。),装订要整齐。 4.开题报告完成,此表经相关人员签字后,须交学院研究生教务秘书保存。 一、学位论文研究内容 班学号:200311202004 姓名:×××× 入学时间:2006年9月 学位论文题目 聚类算法研究及其在IDS中的应用 学位论文的课题来源: 1.纵向 √ 2.横向 3.自拟 学位论文类型: 1.基础研究 2.应用基础研究√ 3.应用研究 学位论文研究内容 论文的研究内容包括两个方面:一是研究新的高效的聚类算法;一是把已有的聚类算法或论文提出的新算法和入侵检测技术相结合,从而提出一个好的入侵检测模型。具体的研究内容包括以下几个点: 第一、针对聚类算法的研究问题: 1、如何提高算法的可扩展性 许多聚类算法在小于200个数据对象的小数据集上是高效率的,但是无法处理一个大规模数据库里的海量对象。现有的聚类算法只有极少数适合处理大数据集,而且只能处理数值型数据对象,无法分析具有类属性的数据对象。 2、如何处理离群点 在实际应用中,估计数据集中的离群点可能是非常困难的,很多算法通常丢弃增长缓慢的簇,这样的簇趋向于代表离群点。然而在某些应用中,用户可能对相对较小的簇比较感兴趣,比如入侵检测中,这些小的簇可能代表异常行为,那么我们需要考虑在对算法影响更小的前提下,如何更好的处理这些离群点。 3、研究适合具有类属性数据的聚类算法的有效性 对聚类分析而言,有效性问题通常可以转换为最佳类别数K的决策。而目前有关聚类算法的有效性分析,大都集中在对数值数据的聚类方式分析上。对于具有类属性的数据聚类,还没有行之有效的分析方法。 第二、针对聚类算法在IDS应用中的研究问题: 1、如何结合聚类技术和入侵检测技术取得更好的效果 很多的聚类算法都已经和IDS应用环境结合起来了,很多研究者对前人提出的算法作出改进后,应用到IDS系统中去,或者提出一个全新的算法来适应IDS的要求。随着聚类技术的不断发展,聚类技术在入侵检测中的应用将是一个很有前景的工作。我们需要把更好的聚类技术成果应用到入侵检测中。 2、利用聚类技术处理入侵检测中的频繁误警 虽然入侵检测是重要的安全措施,然而它常常触发大量的误警,使得安全管理员不堪重负,事实上,大量的误警是重复发生并且频繁发生的,可以利用聚类技术来寻找导致IDS产生大量误警的本质原因。 二、学位论文研究依据 学位论文的选题依据和研究意义,以及国内外研究现状和发展趋势(应有2000-3000字) 聚类分析研究已经有很长的历史,其重要性及其与其他研究方向的交叉特性已经得到了研究者的充分肯定。对聚类算法的研究必将推动相关学科向前发展。另外,聚类技术已经活跃在广泛的应用领域。作为与信息安全专业的交叉学科,近年来,聚类算法在入侵检测方面也得到大量的应用。然而,聚类算法虽取得了长足的发展,但仍有一些未解决的问题。同时,聚类算法在某些应用领域还没有充分的发挥作用,聚类技术和入侵检测技术结合得还不够完善。在这种背景下,我们认为,论文的选题是非常有意义的。 本论文研究的内容主要包括两个方面:聚类算法的研究以及聚类算法在入侵检测中的应用。下面从两个方面阐述国内外这两个方面的发展现状和趋势: 第一、聚类算法的研究现状和发展趋势 前人已经提出很多聚类算法,然而没有任何一种聚类算法可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,可以将聚类算法分为以下几种: 1.划分聚类算法 划分聚类算法需要预先指定聚类数目或聚类中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终的聚类结果,划分聚类算法典型代表是k-means算法[1]和k-modoids算法[2]。这些算法

文档评论(0)

rfxo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档