烟塔合一技术的环保优势.docVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
烟塔合一技术的环保优势0引言 烟塔合一技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔排放烟气,冷却塔既有原有的散热功能,又替代烟囱排放脱硫后的洁净烟气。此项技术在国外从70年代就开始研究,通过不断的试验、研究、分析和改进,已日趋成熟,以德国的SHU公司和比利时的HmaonSobelco公司为代表。在德国新建火电厂中,已经广泛地利用冷却塔排放脱硫烟气,成为没有烟囱的火电厂。 我国的环保要求越来越严格,湿法烟气脱硫技术已经广泛应用,新建机组大部分都采用了湿法烟气脱硫工艺。湿法烟气脱硫工艺的广泛应用,其高脱硫效率使电厂排放的烟气中SO2含量大大减少,使得烟塔合一技术的采用成为可能。利用冷却塔排放烟气,脱硫后的净烟气无需再加热,不仅节省了烟囱的费用,还节省了烟气再热系统的投资和运行、保养费用,虽然冷却塔排放低温烟气,增加了防腐蚀的费用,但节省了总的初投资和运行维护费用。此外由于省去了烟气再热系统,还避免了未净化烟气泄漏而造成最终脱硫效率的下降。此外,一些城市电厂由于烟囱限高要求,只能采用新的排烟技术来达到特殊的外部要求和环境要求,这些,都为烟塔合一技术在我国的应用提供了广阔的发展空间。 1烟塔合一技术概述 烟塔合一工艺系统通常有2种排放形式,分别为外置式和内置式。 1.1外置式 把脱硫装置安装在冷却塔外,脱硫后的洁净烟气引入冷却塔内排放。 脱硫装置安装在冷却塔外,净烟气直接引到冷却塔喷淋层的上部,通过安装在塔内的除雾器除雾后均匀排放,与冷却水不接触。国外早期当脱硫系统运行故障时,由于原烟气的温度和二氧化硫的含量相对较高,不适于通过冷却塔排放,需经干式烟囱排放。目前由于脱硫装置运行稳定,冷却塔外一般不设旁路烟囱。 1.2内置式 近几年国外的烟塔合一技术进一步发展,开始趋向将脱硫装置布置在冷却塔里面。使布置更加紧凑,节省用地。其脱硫后的烟气直接从冷却塔顶部排放。由于省去了烟囱、烟气热交换器,减少了用地,可大大降低初投资,并节约运行和维护费用。 以下介绍的是内置式的烟塔合一工艺技术。 2采用烟塔合一技术对烟气的影响 从环保角度来看,冷却塔排烟和烟囱排烟的根本区别在于: a. 烟气或烟气混合物的温度不同。 b. 混合物的排出速度不同。 c. 混合处的初始浓度不同。 从图1可以看出烟塔合一技术与传统烟囱排烟有较大的不同。 2.1烟气抬升高度 2.1.1理论分析 从塔中排放出的净化烟气温度约50 ,高于塔内湿空气温度,发生混合换热现象,混合后的结果改变了塔内气体流动工况。由于进入塔内的烟气密度低于烟气温度塔内空气的密度,对冷却塔内空气的热浮力产生正面影响。此外,进入冷却塔的烟气很少,其体积只占冷却塔空气体积的10%以下。故烟气能够通过自然冷却塔顺利排放。烟气的排入对塔内空气的抬升和速度等影响起到了正面作用。 在排放源附近,烟气的抬升受环境湍流影响较小。大气层的温度层不是很稳定时,烟气抬升路径主要受自身湍流影响,决定于烟气的浮力通量、动量通量及环境风速等。这段时间大约为几十秒至上百秒,这段时间内烟气上升路径呈曲线形式。烟气在抬升过程中,由于自身湍流的作用,会不断卷入环境空气。由于烟气不断卷入具有负浮力的环境空气,同时又受到环境中正位温梯度的抑制,它的抬升高度路径会逐渐变平,直至终止抬升[1]。 湿烟气也遵循以上抬升规律,不同的是饱和的湿烟气在抬升过程中,会因为压强的降低及饱和比湿的减小而出现水蒸气凝结。水蒸气凝结会释放凝结潜热,这会使湿烟气温度升高密度低,浮力增加。在不饱和的环境下,湿烟气中只有很小的一部分水蒸气会凝结,因水蒸气凝结所释放的潜热使烟气的浮力增加不会很大。然而,当饱和的湿烟气升入饱和大气环境中,这种潜热释放会明显改变抬升高度,抬升高度会成倍的增加。图2是干、湿烟气抬升高度的对比,可以看出同样体积的湿烟气的抬升高度相当于将干烟气加热了几十度。干、湿烟气抬升高度对比见图2。 目前国内大型火电厂机组烟囱高度一般都在180~240 m,冷却塔高度在110~150 m,高度相差较大。在相同条件下,湿烟气的抬升高于干烟气。 2.1.2实际抬升高度分析 根据GB 132232003《火电厂大气污染物排放标准》中推荐的烟气抬升高度计算方法[3],烟气抬升高度H是正比于烟气热释放率QH、烟囱高度Hs的,反比于烟气抬升计算风速Us;而热释放率正比于排烟率和烟气温度与环境温度之差ΔT烟气抬升高度H正比于排烟率和烟气温度与环境温度之差ΔT 。 当QH≥21 000 kJ/s,且ΔT≥35 K时, 城市、丘陵的抬升高度: Hs——烟囱的几何高度,m; ΔT ——烟囱出口处烟气温度与环境温度之差,K; QH——烟气热释放率,kJ/s; CP——标准状态下烟气

文档评论(0)

wuhuaiyu002 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档