- 1、本文档共47页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第1节 液体和固体介质的极化、电导和损耗
三、电介质的损耗 (一)电介质的损耗的基本概念 介质损耗:在电场作用下电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极化(例如偶极子、夹层极化)引起的损耗,总称介质损耗。 直流下:电介质中没有周期性的极化过程,只要外加电压还没有达到引起局部放电的数值,介质中的损耗将仅由电导组成,所以可用体积电导率和表面电导率说明问题,不必再引入介质损耗这个概念了。 式中: —电源角频率; -功率因数角; -介质损耗角。 交流时:流过电介质的电流 此时介质的功率损耗: (3-7) * 电介质的电气特性表现在电场作用下的 导电性能 介电性能 电气强度 液体和固体介质广泛用作电气设备的内绝缘,常用的液体和固体介质为: 液体介质:变压器油、电容器油、电缆油 固体介质:绝缘纸、纸板、云母、塑料、电瓷、玻璃、硅橡胶 第三章 液体和固体介质的电气特性 电导率 (绝缘电阻率 ) 介电常数 介质损耗角正切 击穿电场强度 表征参数: 第一节 液体和固体介质的极化、电导和损耗 电介质的极化 电介质的电导 电介质的损耗 电介质的极化是电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。介电常数来表示极化强弱。对于平行平板电容器,极间为真空时: 一、电介质的极化 放置固体介质时,电容量将增大为: 相对介电常数: ε0---真空的介电常数 ε ---介质的介电常数 εr---介质的相对介电常数 A ---极板面积,cm2 d ---极间距离,cm 下面的表3-1列出了常用电介质的εr值(20°C时) εr是反映电介质极化特性的一个物理量。 可见,气体εr接近于1,液体和固体大多在2~6之间。 用于电容器的绝缘材料,显然希望选用εr大的电介质,因为这样可使单位电容的体积减小和重量减轻。 其他电气设备中往往希望选用εr较小的电介质,这是因为较大的εr往往和较大的电导率相联系,因而介质损耗也较大。 采用εr较小的绝缘材料还可减小电缆的充电电流、提高套管的沿面放电电压等。 在高压电气设备中常常将几种绝缘材料组合在一起使用,这时应注意各种材料的εr值之间的配合,因为在工频交流电压和冲击电压下,串联的多层电介质中的电场强度分布与串联各层电介质的εr成反比。 最基本的极化型式有电子式极化、离子式极化和偶极子极化等三种,另外还有夹层极化和空间电荷极化等。现简要介绍如下: (一)电子式极化 在外电场 的作用下,介质原子中的电子轨道将相对于原子核发生弹性位移。正负电荷作用中心不再重合而出现感应偶极矩 ,其值为 (矢量 的方向为由-q指向+q)。这种极化称为电子式极化或电子位移极化。 电子式极化存在于一切电介质中,有两个特点: 完成极化需要的时间极短; 外场消失,整体恢复中性。 所以这种极化不产生能量损耗,不会使介质发热。 (二) 离子式极化 固体无机化合物大多属离子式结构,无外电场时,晶体的正、负离子对称排列,各个离子对的偶极矩互相抵消,故平衡极矩为零。 在出现外电场后,正、负离子将发生方向相反的偏移,使平均偶极矩不再为零,介质呈现极化。 离子式极化的特点: 1、离子相对位移有限,外电场消失后即恢复原状; 2、所需时间很短,其 几乎与外电场频率无关。 温度对离子式极化的影响: 1、离子间的结合力会随温度的升高而减小,从而使极化程度增强; 2、离子的密度随温度的升高而减小,使极化程度减弱。通常前一种影响较大,故其 一般具有正的温度系数。 (三)偶极子极化 极性电介质:分子具有固有的电矩,即正、负电荷作用中心永不重合,由极性分子组成的电介质称为极性电介质。 极性分子不存在外电场时,极性分子的偶极子因热运动而杂乱无序的排列着,如图所示,宏观电矩等于零,因而整个介质对外并不表现出极性。 出现外电场后,原先排列杂乱的偶极子将沿电场方向转动,作较有规则的排列,如图所示,因而显示出极性。这种极化称为偶极子极化或转向极化。 偶极子极化是非弹性的,极化过程需要消耗一定的能量,极化所需的时间也较长,10-10~10-2s,所以极性电介质的 值与电源频率有较大关系。 偶极子极化与频率f 的关系: 频率太高时,偶极子将来不及转动,因而其 值变小,如图所示。其中 相当于直流电场下的相对介电常数,f f1 以后偶极子将越来越跟不上电场的交变, 值不断下降;当f =f2 时,偶极子已完全不跟着电场转动了,这时只存在电子式极化, 减小到 。 偶极子极化与温度t的关系: 温度升高时,分子热
文档评论(0)