- 1、本文档共14页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于噪声分析的机械故障诊断方法研究.doc
基于噪声分析的机械故障诊断方法研究
摘要
基于噪声分析的机械故障诊断方法可以非接触地获得机械信号,适用于众多不便于使用振动传感器的场合,如某些高温、高腐蚀环境,是一种常用而有效地故障诊断方法。但在实际应用中,由于不相干噪声和环境噪声的影响,我们需要的待测信号往往被淹没在这些混合噪声中,信号的信噪比较低。
盲源分离作为数字信号处理领域的新兴技术,能利用观测信号恢复或提取独立的各个机械信号,在通讯、雷达信号处理、图像处理等众多领域具有重要的实用价值及发展前景,已经成为神经网络学界和信号处理学界的热点研究课题之一。
本文分析总结了盲源分离技术的相关研究现状,对盲源分离的原理、算法、相关应用作了探讨和研究。并就汽轮机噪声问题运用了盲源分离技术进行机械故障诊断,试验表明,该方法能将我们需要的故障信号从混合信号中分离出来,成功实现汽轮机部件的故障诊断。
关键词:声信号,机械故障诊断,独立分量分析
Investigation of Mechanical Fault Diagnosis Based on Noise Analysis
Abstract
You can obtain a non-contact method of mechanical fault diagnosis based on noise analysis of mechanical signals , not suitable for many occasions to facilitate the use of vibration sensors , such as certain high temperature , highly corrosive environment , is a common and effective fault diagnosis method . However, in practice , the effects of noise and extraneous ambient noise , the signal under test often need to be submerged in the mixed noise , lower signal to noise ratio .??Blind source separation as an emerging field of digital signal processing technology to take advantage of the observed signal recovery or extraction of various mechanical signals independently in many communications, radar signal processing , image processing has important practical value and development prospects , has become a neural network one of the hot research topic in academic circles and signal processing .??In this paper summarizes the research status of blind source separation techniques , the principles of blind source separation algorithms, related applications and research were discussed . Turbine noise problems and to use the blind source separation techniques for mechanical fault diagnosis, tests showed that the method we need fault signal can be separated from the mixed signal , fault diagnosis of steam turbine components successfully .
Key Words:Mechanical Fault Diagnosis,Independent Component Analysis
目录
1绪论
1.1 选题背景
1.2 国内外研究发展现状
1.2.1机械故障诊断技术发展现状
1.2.2 声学故障诊断发展现状
1.2.3 盲源分离技术发展现状
1.3课题研究内容及意义
2 噪
文档评论(0)