- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
神经网络作业.doc
一、人工神经网络的发展、应用及研究现状人工神经网络发展简史人工神经网络人工神经网络的智能化特征与能力使其应用领域日益扩大,潜力日趋明显。目前,神经网络的主要应用于以下几个领域。 信息领域 神经网络作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工利用等各个环节。 1)信号处理 神经网络广泛应用于自适应信号处理和非线性信号处理。前者如信号的自适应滤波、时间序列预测、谱估计、噪声消除等;后者如非线性滤波、非线性预测、非线性编码、调制解调等。 2)模式识别 模式识别涉及模式的预处理变换和将一种模式映射为其他类型的操作。神经网络 不仅可以处理静态模式如固定图像、固定能谱等,还可以处理动态模式如视频图像、连续语音等。 数据压缩 在数据传送存储时,数据压缩至关重要。神经网络可对待传送的数据提取模式特征,只将该特征传出,接收后再将其恢复成原始模式。自动化领域 神经网络和控制理论与控制技术相结合,发展为神经网络控制。为解决复杂的非线性不确定、不确知系统的控制问题开辟了一条新的途径。1)系统辨识 在自动控制问题中,系统辨识的目的是为了建立被控对象的数学模型。多年来控制领域对于复杂的非线性对象的辨识,一直未能很好的解决。神经网络所具有的非线性特性和学习能力,使其在系统辨识方面有很大的潜力,为解决具有复杂的非线性、不确定性和不确知对象的辨识问题开辟了一条有效途径。2)神经控制器 控制器在实时控制系统中起着“大脑”的作用,神经网络具有自学习和自适应等智能特点,因而非常适合于做控制器。对于复杂非线性系统神经控制器所达到的控制效果往往明显好于常规控制器。3)智能检测 所谓智能检测一般包括干扰量的处理,传感器输入特性的非线性补偿,零点和量程的自动校正以及自动诊断等。这些智能检测功能可以通过传感元件和信号处理元件的功能集成来实现。在综合指标的检测(例如对环境舒适度这类综合指标的检测)中,以神经网络作为智能检测中的信息处理元件便于对多个传感器的相关信息(如温度、湿度、风向和风速等)进行复合、集成、融合、联想等数据融合处理,从而实现单一传感器所不具备的功能。工程领域 1)汽车工程 汽车在不同状态参数下运行时,能获得最佳动力性与经济性的档位称为最佳档位。利用神经网络的非线性映射能力,通过学习优秀驾驶员的换档经验数据,可自动提取蕴含在其中的最佳换档规律。另外,神经网络在汽车刹车自动控制系统中也有成功的应用,该系统能在给定刹车距离、车速和最大减速度的情况下一人体感受到最小冲击实现平稳刹车而不受路面坡度和车重的影响。神经网络在载重车柴油机燃烧系统方案优化中也得到了应用,有效的降低了油耗和排烟度,获得了良好的社会经济效益。 2)军事工程 神经网络同红外有哪些信誉好的足球投注网站与跟踪系统配合后,可发现和跟踪飞行器。例如借助于神经网络可以检测空间卫星的动作状态是稳定、倾斜、旋转还是摇摆,一般正确率可达95%。 3)化学工程 神经网络在制药、生物化学、化学工程等领域的研究与应用蓬勃开展,取得了不少成果。例如在谱分析方面,应用神经网络在红外谱、紫外谱、折射光谱和质谱与化合物的化学结构间建立某种确定的对应关系方面的成功应用。人工神经网络早在20世纪初,人们从模仿人脑智能的角度出发,研究出了人工神经网络,又称连接主义模式。其借鉴了人脑的结构和特点,并通过大量简单处理单元,互连组成了大规模并行分布式、信息处理和非线性动力学系统。该系统具有巨量并行性、结构可靠性、高度非线性、自学习性和自组织性等特点,它能够解决常规信息处理方法难以解决或无法解决的问题。人工神经网络的产生给人类社会带来了巨大的进步,但是随着社会的发展,神经网络结构的整体能力与其限制性已被逐渐体现出来。目前,对神经网络研究的趋势主要从以下三点进行分析:增强对智能和机器关系问题的认识 研究人类智能一直是科学发展中最有意义,也是空前困难的挑战性问题。20世纪80年代中期出现了“连接主义”的革命或并行分布处理(POP),又被称为神经网络,它具有自学习、自适应和自组织的特点,而这些正是神经网络研究需要进一步增强的主要功能。构建多层感知器与自组织特行图级联想的复合网络是增强网络解决实际问题能力的一个有效途径。 探索更有效的学习新算法在当前人工神经网络学习算法中,都有一个无法避免的缺陷,就是在学习新的模式样本时,会造成已有的知识破坏。于是在给定的学习误差条件下,人工神经网络必须对这些样本周而复始的反复学习,这样不仅造成反复迭代次数多,学习时间长,而且易陷入局部极小值。因而有必要进一步去构思更有效的学习新算法,以便能类似于生物神经网络那样实现知识的积累和继承。Amari运用微分流形理论创建的信息几何,首次将非欧式空间的研究带入人工神经网络模型的研究,Amari在信息几何中的开拓性工作,是在非线性空间研究的一个极其重要的工作,研究了神经网络模
文档评论(0)