第章 原子吸收和原子荧光光谱仪器.doc

第章 原子吸收和原子荧光光谱仪器.doc

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第章 原子吸收和原子荧光光谱仪器.doc

第3章 原子吸收和原子荧光光谱仪器 3.2.3.1火焰原子化器 在原子吸收光谱法中,火焰原子化器经过几十年的研究发展,目前已经相当成熟,也是目前应用最为广泛的原子化器之一。其优点是操作简便、分析速度快、分析精度好、测定元素范围广、背景干扰较小等。但它也存在一些缺点,如由于雾化效率低及燃气和助燃气的稀释,致使测定灵敏度降低;采用中、低温火焰原子化时化学干扰较大;在使用中应考虑安全问题等。 火焰原子化器的工作原理是首先使试样雾化成气溶胶,再通过燃烧产生的热量使进入火焰的试样蒸发、熔融、分解成基态原子。与此同时应尽量减少自由原子的激发和电离,减少背景吸收及发射。在原子吸收光谱测定中,对化学火焰的基本要求是:火焰有足够高的温度,能有效地蒸发和分解试样,并使被测元素原子化;火焰稳定性能良好,噪音低,以保证有良好的测定精密度;较低的光吸收,提高仪器的能量水平,降低测量噪声,以获得低的检出限;燃烧安全。 有关火焰原子化过程的详细内容,请参见本书第四章4.2.1节 火焰原子化。 1 预混合型火焰原子化器的结构 火焰原子化器按照气体的混合方式分可分为预混合式和全燃烧型两种常见形式。预混合式原子化器的燃气与助燃气在进入燃烧器之前已充分混合,产生层流火焰,燃烧稳定,噪音小,吸收光程长,得到了广泛应用。全燃烧型原子化器的燃气、助燃气与样品溶液分别由不同的管道导入燃烧器,在进入燃烧器后边混合边燃烧,火焰燃烧不稳定,噪声大,目前基本不用。 预混合型原子化器由雾化器、预混合室、燃烧器组成。结构如图3.9所示。 图3.9 预混合型火焰原子化器结构图 (1) 雾化器 原子吸收法中所采用的雾器是一种气压式~10μm范围的应占大多数。调节毛细管的位置即可改变负压强而影响吸入速度。装在喷雾头末端的撞击球的作用就是使,有利于原子化。度排除均匀地入燃烧器如果有粗大进入燃烧器,不能迅速挥发,会出现明显扰,火焰温度下降散射。只有大小(小于15m)均匀的进入燃烧器,才能获得最佳灵敏度。~10s。 (3) 燃烧器 燃烧器是火焰原子化器的关键部件之一,一个好的燃烧器,应当具有原子化效率高、噪声小、火焰稳定、燃烧安全的特点。 预混合式原子化器使用最多的是单缝燃烧器,它制作简单,使用范围宽。通常空气-乙炔焰采用0.5mm×100mm的单缝燃烧器,一氧化二氮—乙炔焰采用0.5mm×50mm的单缝燃烧器。燃烧速度较小的火焰,燃烧器缝隙可稍大些。如果使用燃烧速度快的火焰,必需采用较小的燃烧缝,否则容易引起回火事故。多缝(常用3缝)燃烧器外测狭缝的火焰可屏蔽大气,减小火焰噪音,因此3缝燃烧器的稳定性比一般的单缝燃烧器高,它的缺点是消耗燃料多,不能用于一氧化二氮—乙炔火焰。另外,在火焰发射分析时常采用一种圆形燃烧器,它是端面有许多小园孔的圆柱形燃烧器。进行原子吸收光谱分析时,为增加灵敏度需要较长的原子吸收光程,故采用长缝式燃烧器。测定浓度高的样品时,有时需要将燃烧器旋转一定的角度。 燃烧器一般采用耐高温、导热性好的材料制成,常用钛铸造或拼制而成,为清洗积炭,应方便拆卸。缝式燃烧器采用带凹形沟面结构,当火焰燃烧时,凹形沟面造成周围空气的对流状态,改善了火焰燃烧的动力学特性,减小了缝隙边缘的碳沉积。 2 几种常用火焰 按照火焰的反应特性,一般将火焰分为三类:还原性火馅(富燃火馅)、中性火焰(化学计量火焰)和氧化性火焰(贫燃火焰)。对于原子吸收光谱测定而言,最合适的是还原性火焰。影响火焰反应的主要因素是燃气的性质及燃气与助燃气之比例。 (1) 空气—乙炔火焰 空气-乙炔火焰燃烧稳定,重复性好,噪声低。燃烧速度不是很大,只有158cm·s-1,使用安全,易于操作。火焰温度比较高,最高温度可达2300℃,除个别元素如A1、Ti、Zr、Ta等之外,对多数元素都有足够的测定灵敏度。调节乙炔和空气的流量比,可方便地获得不同氧化还原特性的火焰,以适应于不同元素的测定。例如贫燃火焰对测定Au、Pt,、Pd,Rh、Ir等有很高的灵敏度。cm?s-1,远远大于空气-乙炔火焰的燃烧速度,为了保证稳定燃烧,一定要在雾化室内保持相当高的压力和使用窄缝燃烧器,这样又伴随着产生了另一个问题,即由于试液中盐结晶或烟尘阻塞燃烧缝隙,使火焰变得不稳定。用氧气做助燃气,除了不容易维持稳定的燃烧条件之外,在安全措施上也要求比较严格。因此,氧气-乙炔火焰目前很少用于原于吸收光谱测定。使用一氧化二氮代替空气做助燃气,既可以提高乙炔火焰的温度(一氧化二氮-乙炔火焰最高温度可以达到2 955℃,接近于氧气-乙炔火焰的温度),又能保持较低的燃烧速度,一氧化二氮-乙炔火焰的燃烧速度只有160 cm?s-1,接近于空气-乙炔火焰的燃烧速度。使用这种火焰可以测定约70种元素,大大地扩大了火焰原子吸收分光光度法的应用范围。一氧化二氮-乙炔火焰是目前

文档评论(0)

lyb01 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档