- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于RBF神经元网络的风电功率短期预测.pdf
第 39 卷 第 15 期 电力系统保护与控制 Vol.39 No.15
2011 年 8 月 1 日 Power System Protection and Control Aug. 1, 2011
基于RBF神经元网络的风电功率短期预测
1,2 3 4
武小梅 ,白银明 ,文福拴
(1.华南理工大学电力学院,广东 广州 510640;2.广东工业大学自动化学院,广东 广州 510006;
3.天津市电力公司城南供电分公司,天津 300210;4.浙江大学电气工程学院,浙江 杭州 310027)
摘要:准确地预测风力发电的输出功率对电力系统调度、电力系统稳定性和风电场运行都具有重要意义。从实际运行的风电
场获得了相关风速、环境温度和风电功率的历史数据,建立了基于径向基函数(Radial Basis Function, RBF)神经元网络
的短期风电功率预测模型。运用该模型进行了1 h后的风电输出功率预测,预测误差在12%附近。通过将预测结果和实际风
电输出功率比较,表明该方法预测精度较高且比较稳定。
关键词:风力发电功率;电力系统调度;风电场; RBF神经网络;短期预测
Short-term wind power forecast based on the Radial Basis Function neural network
1,2 3 4
WU Xiao-mei , BAI Yin-ming , WEN Fu-shuan
(1. School of Electrical Power, South China University of Technology, Guangzhou 510640, China;
2. Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China;
3. Chengnan Branch of Tianjin Power Supply Company, Tianjin 300210, China;
4. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)
Abstract: Accurate wind power outputs forecasting plays an important role in power system dispatching, power system stability,
and wind farm operation. Based on historical data from an operating wind farm such as wind speed, environmental temperature, wind
power and so on, a short-term wind power forecasting model based on the well-developed Radial Basis Function(RBF) neural
network is presented for hour-ahead forecasting, and the predicted error is about 12%. The forecasting results are compared with
actual wind power outputs, and this shows
文档评论(0)