响应表面试验设计方法及MINITAB优化(CCD_BBD)(37页).pptVIP

响应表面试验设计方法及MINITAB优化(CCD_BBD)(37页).ppt

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
响应表面试验设计方法及MINITAB优化(CCD_BBD)(37页),minitab试验设计,响应面ccd和bbd,正交试验设计,试验设计,正交试验设计软件,试验设计与数据处理,试验设计方法,正交试验设计表,试验设计与分析

响应表面试验设计及MINITAB优化 CCD BBD 什么是RSM? 适用范围 方法分类 一般步骤 基本概念 立方点(cube point) 轴向点(axial point) 中心点(center point) 区组(block) 序贯试验(顺序试验) 旋转性(rotatable)设计 α的选取 中心点的个数选择 但有时认为,这样做的试验次数多,代价太大, Nc其实取2以上也可以;如果中心点的选取主要是为了估计试验误差, Nc取4以上也够了。 总之,当时间和资源条件都允许时,应尽可能按推荐的Nc个数去安排试验,设计结果和推测出的最佳点都比较可信。实在需要减少试验次数时,中心点至少也要2-5次。 6.2.3 Box-Behnken试验设计 特点 6.2.4 分析响应曲面设计的一般步骤 6.2.5 用MINITAB实现响应曲面设计 生成响应曲面设计表 编码值与实际值 分析响应曲面设计 线性回归结果 非线性回归结果 指标最优化 例6.2-1 大豆施肥量最优化设计 6.2.5 选择优化设计(Select Optimal Design) Term Coef(coded) SE Coef T P Coef(uncoded) Constant 10.4623 0.4062 25.756 0.000 12.4512 A -0.5738 0.2695 -2.129 0.059 0.9626 B 0.1834 0.2695 0.680 0.512 -2.2841 C 0.4555 0.2695 1.690 0.122 -1.4794 A*A -0.6764 0.2624 -2.578 0.027 -0.2676 B*B 0.5628 0.2624 2.145 0.058 1.1164 C*C -0.2734 0.2624 -1.042 0.322 -0.2388 A*B -0.6775 0.3521 -1.924 0.083 -0.6001 A*C 1.1825 0.3521 3.358 0.007 0.6951 B*C 0.2325 0.3521 0.660 0.524 0.3060 输出结果:二次多项式回归系数及显著性检验 对因素实际值的回归系数 P值大的项不显著 对编码值的回归系数 Term Coef(coded) SE Coef T P Coef(uncoded) Constant 10.2386 0.3379 30.303 0.000 12.6189 A -0.5738 0.2641 -2.173 0.051 0.8848 B 0.1834 0.2641 0.694 0.501 -1.7352 C 0.4555 0.2641 1.725 0.110 -2.0904 A*A -0.6493 0.2558 -2.538 0.026 -0.2568 B*B 0.5899 0.2558 2.306 0.040 1.1702 A*B -0.6775 0.3450 -1.964 0.073 -0.6001 A*C 1.1825 0.3450 3.427 0.005 0.6951 输出结果:剔除C× C和B× C后二次多项式回归系数及显著性检验 这两个二次项回归系数有很小的改变,这是由于旋转设计只具有近似正交性 目标是最大值 下限设为10 目标值设为20 因子最优水平值 最优预测值 在研究大豆产量Y的试验中,考虑氮肥A、磷肥B、钾肥C这三种肥料的施肥量。每个因素取两个基本水平,采用中心复合试验,其中: 氮肥的编码值-1和+1对应的实际值是2.03和5.21; 磷肥的编码值-1和+1对应的实际值是1.07和2.49; 钾肥的编码值-1和+1对应的实际值是1.35和3.49; * * 响应曲面设计方法(Re

您可能关注的文档

文档评论(0)

docinppt + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档