神经网络评价法.docVIP

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
神经网络评价法,人工神经网络评价法,神经网络评价,神经网络评价模型,神经网络分析法,神经网络法,人工神经网络法,神经网络预测法,bp神经网络法,神经网络方法

第五章? 第一节 思想和原理 第二节 模型和步骤 第三节 应用和案例 第一节 思想和原理 在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。 人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是人工神经网络的重要特征。 人工神经网络是模仿生物神经网络功能的一种经验模型,首先根据输入的信息建立神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,使输出结果与实际值之间差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系,它能够把问题的特征反映在神经元之间相互联系的权值中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有自学习、自组织的潜力。另外,它有较强的容错能力,能够处理那些有噪声或不完全的数据。 基于人工神经网络的多指标综合评价方法通过神经网络的自学习、自适应能力和强容错性,建立更加接近人类思维模式的定性和定量相结合的综合评价模型。训练好的神经网络把专家的评价思想以连接权的方式赋予于网络上,这样该网络不仅可以模拟专家进行定量评价,而且避免了评价过程中的人为失误。由于模型的权值是通过实例学习得到的,这就避免了人为计取权重和相关系数的主观影响和不确定性。 反向传播(Back Propagation, BP)神经网络是由Rumelhart等人于1985年提出,它是一种多层次反馈型网络。基于BP人工神经网络的综合评价方法具有运算速度快、问题求解效率高、自学习能力强、适应面宽等优点,较好地模拟了评价专家进行综合评价的过程,因而具有广阔的应用前景。 第二节 模型和步骤 一、模型介绍 人工神经网络是对生物神经机制研究基础上产生的智能仿生模型。处理单元,或称之为神经元,是神经网络的最基本的组成部分。一个神经网络系统中有许多处理单元,每个处理单元的具体操作都是从其相邻的其他单元中接受输入,然后产生输出送到与其相邻的单元中去。神经网络的处理单元可以分为三种类型:输入单元、输出单元和隐含单元。输入单元是从外界环境接受信息,输出单元则给出神经网络系统对外界环境的作用。隐含单元则处于神经网络之中,它从网络内部接受输入信息,所产生的输出则只作用于神经网络系统中的其它处理单元。隐含单元在神经网络中起着极为重要的作用。 最初的神经网络结构只由输入层和输出层。这种双层神经网络能力极为有限。后来在这种双层神经网络的基础上,引入了中间隐含层形成了三层神经网络模型,这种三层神经网络模型大大提高了神经网络的能力。 神经网络的卓越能力来自于神经网络中各神经元之间的连接权。连接权一般地不能预先准确地确定,故神经网络应具有学习功能,也即能根据样本模式逐渐调整权值,使神经网络具有卓越的处理信息的功能。 神经网络的工作过程具有循环特征。而在每个循环中又分为两个阶段,即工作期与学习期。在工作期期间,各神经元之间的连接权值不变,但计算单元的状态发生变化。此期间的特点是:进行速度快,故又称为快过程,并称此期间中的神经元处于短期记忆。在学习期期间,各计算单元的状态不变,但对连接权值作修改。此阶段速度要慢得多,故又称为慢过程,并称此期间中的神经元处于长期记忆。 对事物的判断分析必须经过一个学习和训练过程。1949年,Hebb率先提出了改变神经元连接强度的学习规则。其过程是;将样本(训练)数据赋予输入端,并将网络实际输出与期望输出相比较,得到误差信号,以此为依据来调整连接权值。重复此过程,直到收敛于稳态。 1985年,Rumelhart等人提出了误差反向传递学习算法

文档评论(0)

docinpfd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5212202040000002

1亿VIP精品文档

相关文档