ch.5晶体缺陷.ppt

  1. 1、本文档共61页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ch.5晶体缺陷,晶体缺陷,晶体缺陷ppt,晶体缺陷类型,光子晶体缺陷,晶体缺陷的应用,常见的晶体缺陷,晶体缺陷竹节效应,晶体缺陷的表示

§5.1 点缺陷 (二)柏氏矢量 二、位错的运动 位错在滑移时是通过位错线或位错附近的原子逐个移动很小的距离完成的 刃位错攀移示意图 三、位错的能量及其交互作用 1、应力场 实例照片 (二)位错应变能与位错线张力 四、位错的产生与增殖 §5.3 晶体的界面 晶体表面 NaCl表面层中Na+向里;Cl-向外移动并形成双电层 粉体表面结构    粉体在制备过程中,由于反复地破碎,不断形成新的表面。表面层离子的极化变形和重排使表面晶格畸变,有序性降低。因此,随着粒子的微细化,比表面增大,表面结构的有序程度受到愈来愈强烈的扰乱并不断向颗粒深部扩展,最后使份体表面结构趋于无定形化。    基于X射线、热分析和其它物理化学方法对粉体表面结构所作的研究测定,提出两种不同的模型。一种认为粉体表面层是无定形结构;另一种认为粉体表面层是粒度极小的微晶结构。 粉体表面层是无定形结构 的实验验证: 石英的相变吸热峰面积随SiO2粒度的变化; 石英密度值随粒度的变化。 粉体表面层是微晶结构的实验验证:   对粉体进行更精确的X射线和电子衍射研究发现,其X射线谱线不仅强度减弱而且宽度明显变宽。因此认为粉体表面并非无定形态,而是覆盖了一层尺寸极小的微晶体,即表面是呈微晶化状态。由于微晶体的晶格是严重畸变的,晶格常数不同于正常值而且十分分散,这才使其X射线谱线明显变宽。    对鳞石英粉体表面的易溶层进行的X射线测定表明,它并不是无定形质;从润湿热测定中也发现其表面层存在有硅醇基团。 玻璃表面结构 表面张力的存在,使玻璃表面组成与内部显著不同 在熔体转变为玻璃体的过程中,为了保持最小表面能,各成分将按其对表面自由能的贡献能力自发地转移和扩散。 在玻璃成型和退火过程中,碱、氟等易挥发组分自表面挥发损失。   因此,即使是新鲜的玻璃表面,其化学成分、结构也会不同于内部。这种差异可以从表面折射率、化学稳定性、结晶倾向以及强度等性质的观测结果得到证实。 玻璃中的极化离子会对表面结构和性质产生影响。 对于含有较高极化性能的离子如Pb2+、Sn2+、Sb3+、Cd2+等的玻璃,其表面结构和性质会明显受到这些离子在表面的排列取向状况的影响。这种作用本质上也是极化问题。   例如铅玻璃,由于铅原子最外层有4个价电子(6S26P2),当形成Pb2+时,因最外层尚有两个电子,对接近于它的O2-产生斥力,致使Pb2+的作用电场不对称,Pb2+以2Pb2+ ?Pb4+ + Pb0方式被极化变形。  在常温时,表面极化离子的电矩通常是朝内部取向以降低其表面能。因此常温下铅玻璃具有特别低的吸湿性。但随温度升高,热运动破坏了表面极化离子的定向排列,故铅玻璃呈现正的表面张力温度系数。 不同极化性能的离子进入玻璃表面层后,对表面结构和性质会产生不同的影响。 固体表面的几何结构 实验观测表明,固体实际表面是不规则而粗糙的,存在着无数台阶、裂缝和凹凸不平的峰谷。这些不同的几何状态同样会对表面性质产生影响,其中最重要的是表面粗糙度和微裂纹。 表面粗糙度会引起表面力场变化,进而影响其表面性质。   从色散力的本质可见,位于凹谷深处的质点,其色散力最大,凹谷面上和平面上次之,位于峰顶处则最小;反之,对于静电力,则位于孤立峰顶处应最大,而凹谷深处最小。   由于固体表面的不平坦结构,使表面力场变得不均匀,其活性和其它表面性质也随之发生变化。其次,粗糙度还直接影响到固体比表面积、内、外表面积比值以及与之相关的属性,如强度、密度、润湿、孔隙率和孔隙结构、透气性和浸透性等。此外,粗糙度还关系到两种材料间的封接和结合界面间的吻合和结合强度。 表面微裂纹是由于晶体缺陷或外力作用而产生。微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要。   脆性材料的理论强度约为实际强度的几百倍,正是因为存在于固体表面的微裂纹起着应力倍增器的作用,使位于裂缝尖端的实际应力远远大于所施加的应力。   葛里菲斯(Griffith)建立了著名的玻璃断裂理论,并导出了材料实际断裂强度与微裂纹长度的关系                   式中, R为断裂强度,C为微裂纹长度, E为弹性模量,α是表面自由能。 单位长度螺位错应变能: 单位长度刃位错应变能: 单位长度混合位错应变能: 其中: (a)比较 wE wS (b)一般公式 其中:α为几何因素系数,约0.5~1.0 小结 位错——点阵畸变——应变能 b↓——w↓——位错能量↓——越稳定 其大小 说明 (三)位错与晶体缺陷的交互作用 相互平行的位错之间的交互作用 同号位错相斥 体系能量下降 (a)同号位错: 异号

文档评论(0)

xiaolan118 + 关注
实名认证
内容提供者

你好,我好,大家好!

版权声明书
用户编号:7140162041000002

1亿VIP精品文档

相关文档