- 1、本文档共34页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
人工智能ch13,人工智能,人工智能电影,人工智能计算器,人工智能程序设计,模式识别与人工智能,人工智能必威体育精装版进展,人工智能技术,人工智能下载,人工智能算法
* 第 13 章 Agent系统 13.1 Agent的概念 13.1.1 什么是Agent 我们知道,Agent一词的通常含义有: 代理(人)、代办、 媒介、服务等, 而且作为“代理”在计算机领域广为使用。但在人工智能领域现在所说的Agent则具有更加特定的含义。简单地讲, 这里的Agent指的是一种实体, 而且是一种具有智能的实体。 这种实体可以是智能软件、智能设备、智能机器人或智能计算机系统等等, 甚至也可以是人。国内人工智能文献中对Agent的翻译或称呼有智能体、主体、智能Agent等, 现在则逐渐趋向于不翻译而直接使用Agent。Agent的这一特定含义是由MIT 的Minsky在其1986年出版的《思维的社会》一书中提出的。Minsky认为社会中的某些个体经过协商之后可求得问题的解, 这些个体就是Agent。他还认为Agent应具有社会交互性和智能性。从此, 这种含义扩展了的Agent便被引入人工智能领域, 并迅速成为研究热点。 Agent的抽象模型是具有传感器和效应器,处于某一环境中的实体。它通过传感器感知环境; 通过效应器作用于环境; 它能运用自己所拥有的知识进行问题求解; 它还能与其他Agent进行信息交流并协同工作。 因此, Agent应具有如下基本特性: (1) 自主性,亦称自治性, 即能够在没有人或别的Agent的干预下, 主动地自发地控制自身的行为和内部状态, 并且还有自己的目标或意图。 (2) 反应性, 即能够感知环境, 并通过行为改变环境。 (3) 适应性, 即能根据目标、环境等的要求和制约作出行动计划, 并根据环境的变化, 修改自己的目标和计划。 (4) 社会性,即一个Agent一般不能在环境中单独存在, 而要与其他Agent在同一环境中协同工作。而协作就要协商, 要协商就要进行信息交流, 信息交流的方式是相互通信。 从面向对象的观点来看, Agent也就是一种高级对象, 或者说是具有智能的对象。 13.1.2 Agent的类型 从Agent理论模型角度来看, Agent可分为反应型、 思考型(或认知型)和两者复合型。 从特性来看, Agent又可分为以下几种: (1) 反应式Agent。这种Agent能够对环境主动进行监视并能做出必要的反应。反应式Agent最典型的应用是机器人, 特别是Brookes类型的机器昆虫。 (2) BDI型 Agent, 即有信念(Belief, 即知识)、愿望(Desire, 即任务)和意图(Intention,即为实现愿望而想做的事情)的Agent, 它也被称为理性Agent。 这是目前关于Agent的研究中最典型的智能型Agent, 或自治Agent。BDI Agent的典型应用是在Internet上为主人收集信息的软件Agent, 比较高级的智能机器人也是BDI Agent。 (3) 社会Agent。这是处在由多个Agent构成的一个Agent社会中的Agent。 各Agent有时有共同的利益(共同完成一项任务), 有时利益互相矛盾(争夺一项任务)。 因此, 这类Agent的功能包括协作和竞争。办公自动化Agent是协作的典型例子, 多个运输(或电信)公司Agent争夺任务承包权是竞争的典型例子。 (4) 演化Agent。这是具有学习和提高自己能力的Agent。 单个Agent可以在同环境的交互中总结经验教训, 提高自己的能力, 但更多的学习是在多Agent系统,即社会Agent 之间进行的。模拟生物社会(如蜜蜂和蚂蚁)的多Agent系统是演化Agent的典型例子。 (5) 人格化Agent。这是不但有思想, 而且有情感的Agent。 这类Agent研究得比较少, 但是有发展前景。在故事理解研究中的故事人物Agent是典型的人格化Agent。 从所承担的工作和任务性质来看, Agent又可分为信息型Agent、合作型Agent、接口型Agent、移动型Agent等。 特别地,以纯软件实现的Agent被称为软件Agent(Software Agent, SA)。软件Agent是当前Agent技术和应用研究的主要内容。 13.2 Agent的结构 由于Agent的多样性,很难给出一个统一的结构模型。 下面仅给出思考型Agent的一个简单结构模型(见图13-1)和一个简化Agent的结构图(见图13-2)。 图 13-1 思考型Agent结构模型示意图 图 13-2 简化Agent结构模型图 13.3 Agent实例——Web Agent Web Agent是在智能Agent的概念基础上, 结合信息检索、 有哪些信誉好的足球投注网站引擎、机器学习、数据挖掘
文档评论(0)