网站大量收购闲置独家精品文档,联系QQ:2885784924

GARCH模型在Matlab中的实现.docVIP

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
GARCH模型在Matlab中的实现,matlabgarch模型,garchmatlab,matlabgarch工具箱,matlabgarch代码,matlabgarchfit函数,garch11matlab,matlabgarchinmean,matlabgarch预测,matlabdccgarch

多元GARCH模型预测的Matlab程序 function [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores] = full_bekk_mvgarch(data,p,q, BEKKoptions); % PURPOSE: % To Estimate a full BEKK multivariate GARCH model. % % % USAGE: % [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores] = full_bekk_mvgarch(data,p,q,options); % % % INPUTS: % data - A t by k matrix of zero mean residuals % p - The lag length of the innovation process % q - The lag length of the AR process % options - (optional) Options for the optimization(fminunc) % % OUTPUTS: % parameters - A (k*(k+1))/2+p*k^2+q*k^2 vector of estimated parameteters. F % or any k^2 set of Innovation or AR parameters X, % reshape(X,k,k) will give the correct matrix % To recover C, use ivech(parmaeters(1:(k*(k+1))/2) % loglikelihood - The loglikelihood of the function at the optimum % Ht - A k x k x t 3 dimension matrix of conditional covariances % likelihoods - A t by 1 vector of individual likelihoods % stdresid - A t by k matrix of multivariate standardized residuals % stderrors - A numParams^2 square matrix of robust Standad Errors(A^(-1)*B*A^(-1)*t^(-1)) % A - The estimated inverse of the non-robust Standard errors % B - The estimated covariance of teh scores % scores - A t by numParams matrix of individual scores % need to try and get some smart startgin values if size(data,2) size(data,1) data=data; end [t k]=size(data); k2=k*(k+1)/2; scalaropt=optimset(fminunc); scalaropt=optimset(scalaropt,TolFun,1e-1,Display,iter,Diagnostics,on,DiffMaxChange,1e-2); startingparameters=scalar_bekk_mvgarch(data,p,q,scalaropt); CChol=startingparameters(1:(k*(k+1))/2); C=ivech(startingparameters(1:(k*(k+1))/2))*ivech(startingparameters(1:(k*(k+1))/2)); new

文档评论(0)

tianma2015 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档