两步选取基因策略.pdfVIP

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
两步选取基因策略,帧同步码的选取原则,基因治疗的策略,基因组测序策略,候选基因策略,基因测序策略,基因研究策略,后宫步步惊心游戏策略,基因克隆步骤,基因克隆的基本步骤

Knowl Inf Syst (2011) 26:487–500 DOI 10.1007/s10115-010-0288-x REGULAR PAPER A two-stage gene selection scheme utilizing MRMR filter and GA wrapper Ali El Akadi · Aouatif Amine · Abdeljalil El Ouardighi · Driss Aboutajdine Received: 17 February 2009 / Revised: 4 January 2010 / Accepted: 16 January 2010 / Published online: 10 March 2010 © Springer-Verlag London Limited 2010 Abstract Gene expression data usually contain a large number of genes, but a small num- ber of samples. Feature selection for gene expression data aims at finding a set of genes that best discriminates biological samples of different types. In this paper, we propose a two-stage selection algorithm for genomic data by combining MRMR (Minimum Redundancy–Max- imum Relevance) and GA (Genetic Algorithm). In the first stage, MRMR is used to filter noisy and redundant genes in high-dimensional microarray data. In the second stage, the GA uses the classifier accuracy as a fitness function to select the highly discriminating genes. The proposed method is tested for tumor classification on five open datasets: NCI, Lymphoma, Lung, Leukemia and Colon using Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers. The comparison of the MRMR-GA with MRMR filter and GA wrapper shows that our method is able to find the smallest gene subset that gives the most classification accuracy in leave-one-out cross-validation (LOOCV). Keywords Feature selection · Genetic algorithm · MRMR · Support Vector Machine · Naïve Bayes classifier · LOOCV 1 Introduction In recent years, the development of microarray technology has made it possible to analyze thousands or tens of thousands of genes simultaneously. However, the major problem in this analysis is the huge number of genes compared to the limited number of samples [35]. Most classification algorithms suffer from such a high-dimensional input space. Furthermore, most of the genes in arrays are irrelevant or redundant to some specifie

您可能关注的文档

文档评论(0)

wwvfz702 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档