Dynamic Classifier for Nonrigid Human Motion Analysis.pdfVIP

Dynamic Classifier for Nonrigid Human Motion Analysis.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Dynamic Classifier for Nonrigid Human Motion Analysis

Dynamic Classifier for Non-rigid Human Motion Analysis Huang Fei, Ian Reid Department of Engineering Science, University of Oxford, Oxford,UK. fei@robots.ox.ac.uk Abstract Automatic analysis (parsing) of non-rigid human motion in a cluttered out- door enviroment is a useful but challenging task. In a single view point, the lack of depth order relations causes a major ambiguity of the object identities. Coupled with the non-rigidity of articulation, 3D human motion tracking/pose estimation in one view is a formidable problem. In this pa- per, we present a novel solution that directly address this depth ambiguity, in which we extend a discriminative analysis (Support Vector Machine (SVM)) to non-rigid human motion classification with a temporal generative motion model (Hidden Markov Model (HMM)). This method can discriminate dy- namic depth ordering as well as 3D articulated motion automatically from 2D images. Experiments with this method have demonstrated promising results. 1 Introduction Automatic interpretation (parsing) of non-rigid human motion is essential to motion esti- mation, gait pattern analysis and behaviour understanding. A number of motion parsing algorithms have been put forward in related computer vision research areas: object de- tection [5],[6], visual tracking [7] and behaviour understanding [8]. In these fields, ma- chine learning methods have received increasing attention in recent years. Discriminative- learning based approaches such as SVM or AdaBoost have achieved promising results in face [13] or people [6] detection; Sophisticated motion inference algorithms like Particle filtering [11], Meanshift [12], etc. have demonst

文档评论(0)

yaobanwd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档