- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Dynamic Classifier for Nonrigid Human Motion Analysis
Dynamic Classifier for Non-rigid Human
Motion Analysis
Huang Fei, Ian Reid
Department of Engineering Science,
University of Oxford, Oxford,UK.
fei@robots.ox.ac.uk
Abstract
Automatic analysis (parsing) of non-rigid human motion in a cluttered out-
door enviroment is a useful but challenging task. In a single view point,
the lack of depth order relations causes a major ambiguity of the object
identities. Coupled with the non-rigidity of articulation, 3D human motion
tracking/pose estimation in one view is a formidable problem. In this pa-
per, we present a novel solution that directly address this depth ambiguity, in
which we extend a discriminative analysis (Support Vector Machine (SVM))
to non-rigid human motion classification with a temporal generative motion
model (Hidden Markov Model (HMM)). This method can discriminate dy-
namic depth ordering as well as 3D articulated motion automatically from 2D
images. Experiments with this method have demonstrated promising results.
1 Introduction
Automatic interpretation (parsing) of non-rigid human motion is essential to motion esti-
mation, gait pattern analysis and behaviour understanding. A number of motion parsing
algorithms have been put forward in related computer vision research areas: object de-
tection [5],[6], visual tracking [7] and behaviour understanding [8]. In these fields, ma-
chine learning methods have received increasing attention in recent years. Discriminative-
learning based approaches such as SVM or AdaBoost have achieved promising results in
face [13] or people [6] detection; Sophisticated motion inference algorithms like Particle
filtering [11], Meanshift [12], etc. have demonst
您可能关注的文档
- ansys学习教程单元操作.ppt
- API经济与管理趋势与发展方向.pdf
- Application of Noise Path Target Setting Using the Technique of Transfer Path Analysis.pdf
- Applications of Minkowski Functionals to the Statistical Analysis of Dark Matter Models.pdf
- ANSYS传热分析实例汇总.doc
- AP工作原理介绍.pdf
- APVSSL加速技术应用指导书.doc
- ArcGISEngine中矢量数据叠加分析的实现及应用_黄雪莲.pdf
- ArcGIS_Engine+C实例开发教程+添加标注.doc
- ARM LINUX 入门与实践 (阿南) KEIL实验.pdf
文档评论(0)