A Bayesian Analysis of Compressive Sensing Data Recovery in Wireless Sensor Networks.pdfVIP

A Bayesian Analysis of Compressive Sensing Data Recovery in Wireless Sensor Networks.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A Bayesian Analysis of Compressive Sensing Data Recovery in Wireless Sensor Networks

A Bayesian Analysis of Compressive Sensing Data Recovery in Wireless Sensor Networks Riccardo Masiero, Giorgio Quer, Michele Rossi and Michele Zorzi Department of Information Engineering, University of Padova via Gradenigo 6/B – 35131, Padova, Italy Email: {riccardo.masiero, giorgio.quer, rossi, zorzi}@dei.unipd.it Abstract—In this paper we address the task of accurately re- signals through the online estimation of their statistics. The constructing a distributed signal through the collection of a small effectiveness of our approach for data gathering and recovery number of samples at a data gathering point using Compressive has been proved in [5] for both synthetic and real signals. Sensing (CS) in conjunction with Principal Component Analysis (PCA). Our scheme compresses in a distributed way real world In this paper we investigate the statistical distribution of non-stationary signals, recovering them at the data collection the principal components of signals gathered from an actual point through the online estimation of their spatial/temporal Wireless Sensor Network (WSN) deployment. This analysis correlation structures. The proposed technique is hereby char- provides an explanation of the good results that we have acterized under the framework of Bayesian estimation, showing obtained in [5] and proves that CS is a legitimate tool under which assumptions it is equivalent to optimal maximum a posteriori (MAP) recovery. As the main contribution of this for the recovery of real-world signals in WSNs. The main paper, we proceed with the analysis of data collected by our

文档评论(0)

yaobanwd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档