- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
光场成像技术
PAGE \* MERGEFORMAT7
光场成像技术
前言
光场是空间中同时包含位置和方向信息的四维光辐射场的参数化表示,光场数据的获取为计算成像提供了很多新的发展方向。
传统成像方式在拍摄高速运动或者多主体较大间距物体时,容易出现失焦、跑焦现象。对于高速运动物体来说,想抓住精彩一瞬的同时对准焦是非常困难的。此外,要减少高速运动物体带来的运动模糊,如果减少曝光时间则导致图像太暗,增大孔径则造成景深太小,背景模糊。而对多主体目标物来说,焦点往往对准在中心物体上,其他目标由于景深过小往往看不清细节。调小光圈的方法在光线充足的情况下可以使用,但是在拍摄光线不足的室内条件下会带来曝光不足的问题。
光场成像通过记录光辐射在传播过程中的四维位置和方向的信息,相比只记录二维的传统成像方式多出2个自由度,因而在图像重建过程中,能够获得更加丰富的图像信息。此外,还能通过数字重聚焦技术解决特殊场合图像的失焦、背景目标过多等问题; 通过合成孔径技术实现“透视”监视; 在与显微技术融合后,还能得到多视角大景深显微图像,以及重建后的三维立体图。
光场成像的发展
光场成像的雏形可以追溯到1903年Ives 发明的双目视差显示系统中运用的针孔成像技术,通过在主透镜的像面处放置针孔面阵列,从而使原像面处的光辐射按角度进行重分布后记录在光探测器上,避免了角度信息的丢失。
1908 年,Lippman 发明集成照相术( integral photography,IP),后来被广泛运用于三维全息成像.通过用微透镜阵列代替针孔面阵列,在底片上接收到有微小差别的一系列基元图像,消除了Ives 装置中的弥散斑。
Gershun 在1936年提出光场的概念,将其定义为光辐射在空间各个位置向各个方向的传播[3]。他认为,到达空间不同点处的光辐射量连续变化,能够通过几何分析进而积分的方法来计算像面上每点的光辐射量。但是,由于计算量庞大,能够进行高次运算的计算机尚未出现,所以当时未能对其理论进行验证。
1948 年,Gabor 利用2 束相干光干涉记录下物体衍射未聚焦的波前,获得第一张全息图。如果把这张全息图看作是包含方向和位置信息的光??射函数,那么这其实也是一张特殊的光场图像,而非传统只记录强度信息的二维图像。
20 世纪六七十年代,Okoshi、Dudnikov、Dudley、Montebello等学者对IP 技术进行了不断的改进,微透镜阵列在成像方面的作用也得以凸显。
随着计算机技术的不断发展和微透镜制作精度的提高,Adelson 于1992年将光场理论成功运用到计算机视觉,并提出全光场理论( plenoptic theory)。
光场理论的进一步完善归功于1996 年Levoy 的光场渲染理论( light field rendering,LFR),他将光场进行参数化表示,并提出计算成像公式。在此基础上,2005 年,Ng 发明了第一台手持式光场相机,其原理简单,使用方便。2006 年,Levoy 将LFR 理论运用于显微成像,并研制出光场显微镜( lightfield microscopy,LFM) ,能够一次曝光得到多个视角多组焦平面图像,从而得到大景深的显微图片,并可进行三维重建。
目前,随着光电技术及器件的发展和光场理论的进一步完善,光场成像正逐步渗透到航空拍摄、动画渲染、安全监视、科学仪器、摄影传媒、立体显示等各个领域,并朝着集成化、实用化、多元化的方向迈进。
光场的定义及其获取方式
3.1 光场的定义
图1. 光场的四维参数化
光场实质上就是空间中所有光线光辐射函数的总体。光线携带二维位置信息( u,v) 和二维方向信息( θ,φ) 在光场中传递。根据Levoy 的光场渲染理论,空间中携带强度和方向信息的任意光线,都可以用2个平行平面来进行参数化表示( 图1) ,光线与这2个平面相交于2点,形成一个四维光场函数L( u,v,x,y)。对光场的不同理解可形成不同的光场获取方式。如果把光场看作是位置和角度信息的叠加,可以有比较简单的获取方式。比如,通过采用不同的观察视角和不同位置的照明来抓拍一系列照片的方式。但是这2种方法太慢,而且操作不方便。采用针孔成像的方式原理最简单,但是由于位置和角度之间不成线性关系,计算复杂,因而应用也不广泛。
3.2 光场的获取方式
目前获取光场的手段主要分为以下3种:
微透镜阵列。
这是最常用的光场获取方式,实现方式也最简单。在普通成像系统的一次像面处插入一个微透镜阵列,每个微透镜元记录的光线对应相同位置不同视角的场景图像,从而得到一个四维光场。微透镜阵列所在平面可看作图1 中的u-v 面,探测器面可看作x-y面。Adelson 的全光场相机,Ng 的手持光场相机,Levoy 的光场显微镜( LFM),Fife 的
文档评论(0)