《《2016 A variant of the Vavasis-Ye layered-step interior-point algorithm for linear programming》.pdf

《《2016 A variant of the Vavasis-Ye layered-step interior-point algorithm for linear programming》.pdf

  1. 1、本文档共27页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《《2016 A variant of the Vavasis-Ye layered-step interior-point algorithm for linear programming》.pdf

A variant of the Vavasis-Ye layered-step interior-point algorithm for linear programming R. D. C. Monteiro∗ T. Tsuchiya† April, 2001 Abstract In this paper we present a variant of Vavasis and Ye’s layered-step path following primal- dual interior-point algorithm for linear programming. Our algorithm is a predictor-corrector type algorithm which uses from time to time the least layered squares (LLS )direction in place of the affine scaling direction. It has the same iteration-complexity bound of Vavasis and Ye’s algorithm, namely O(n3.5 log(χ¯A + n where n is the number of nonnegative variables and χ¯A is a certain condition number associated with the constraint matrix A. Vavasis and Ye’s algorithm requires explicit knowledge of χ¯A (which is very hard to compute or even estimate )in order to compute the layers for the LLS direction. In contrast, our algorithm uses the affine scaling direction at the current iterate to determine the layers for the LLS direction, and hence does not require the knowledge of χ¯A . A variant with similar properties and with the same complexity has been developed by Megiddo, Mizuno and Tsuchiya. However, their algorithm needs to compute n LLS directions on every iteration while ours computes at most one LLS direction on any given iteration. Key words: Interior-point algorithms, primal-dual algorithms, path-following, central path, lay- ered steps, condition number, polynomial complexity, predictor-corrector, affine scaling, strongly polynomial, linear programming. 1 Introduc

文档评论(0)

qspd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档