《《2016 Inexact constraint preconditioners for linear systems arising in interior point methods》.pdf

《《2016 Inexact constraint preconditioners for linear systems arising in interior point methods》.pdf

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《《2016 Inexact constraint preconditioners for linear systems arising in interior point methods》.pdf

Comput Optim Appl (2007) 36: 137–147 DOI 10.1007/s10589-006-9001-0 Inexact constraint preconditioners for linear systems arising in interior point methods Luca Bergamaschi · Jacek Gondzio · Manolo Venturin · Giovanni Zilli Published online: 15 February 2007 © Springer Science+Business Media, LLC 2007 Abstract Issues of indefinite preconditioning of reduced Newton systems arising in optimization with interior point methods are addressed in this paper. Constraint pre- conditioners have shown much promise in this context. However, there are situations in which an unfavorable sparsity pattern of Jacobian matrix may adversely affect the preconditioner and make its inverse representation unacceptably dense hence too ex- pensive to be used in practice. A remedy to such situations is proposed in this paper. An approximate constraint preconditioner is considered in which sparse approxima- tion of the Jacobian is used instead of the complete matrix. Spectral analysis of the preconditioned matrix is performed and bounds on its non-unit eigenvalues are pro- vided. Preliminary computational results are encouraging. Keywords Interior-point methods · Iterative solvers · Preconditioners · Approximate Jacobian L. Bergamaschi ( ) · G. Zilli Department of Mathematical Methods and Models for Scientific Applications, University of Padua, Padua, Italy e-mail: berga@dmsa.unipd.it G. Zilli e-mail: zilli@dmsa.unipd.it J. Gondzio School of Mathematics, University of Edinburgh, Edinburgh, Scotland, UK e-mail: J.Gondzio@ed.ac.uk M. Venturin Department of Pure and Applied Mathematics, University of Padua, Padua, Italy e-mail: mventuri@math.unipd.it 138 L. Bergamaschi et al. 1 Introduction Interior point methods for linear, quadratic or nonlinear programming are the key op- timization methodology. Their theory [ 12] and implementation [1] is well understood. Wh

文档评论(0)

qspd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档