《《2016 Interior-point methods for optimization》.pdf

《《2016 Interior-point methods for optimization》.pdf

  1. 1、本文档共44页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《《2016 Interior-point methods for optimization》.pdf

c Acta Numerica (2009), pp. 001– Cambridge University Press, 2009 DOI: 10.1017/S0962492904 Printed in the United Kingdom Interior-point methods for optimization Arkadi S. Nemirovski School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA E-mail: arkadi.nemirovski@ Michael J. Todd School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail: mjt7@ This article describes the current state of the art of interior-point methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twenty years. CONTENTS 1 Introduction 1 2 The self-concordance-based approach to IPMs 4 3 Conic optimization 19 4 IPMs for nonconvex programming 36 5 Summary 38 References 39 1. Introduction During the last twenty years, there has been a revolution in the methods used to solve optimization problems. In the early 1980s, sequential quadratic programming and augmented Lagrangian methods were favored for nonlin- ear problems, while the simplex method was basically unchallenged for linear programming. Since then, modern in

文档评论(0)

qspd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档