《《Collaborative Filtering beyond the User-Item Matrix》.pdf

《《Collaborative Filtering beyond the User-Item Matrix》.pdf

  1. 1、本文档共45页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《《Collaborative Filtering beyond the User-Item Matrix》.pdf

Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future Challenges YUE SHI, MARTHA LARSON, and ALAN HANJALIC, Delft University of Technology Over the past two decades, a large amount of research effort has been devoted to developing algorithms that generate recommendations. The resulting research progress has established the importance of the user-item (U-I) matrix, which encodes the individual preferences of users for items in a collection, for recommender systems. The U-I matrix provides the basis for collaborative filtering (CF) techniques, the 3 dominant framework for recommender systems. Currently, new recommendation scenarios are emerging that offer promising new information that goes beyond the U-I matrix. This information can be divided into two categories related to its source: rich side information concerning users and items, and interaction information associated with the interplay of users and items. In this survey, we summarize and analyze recommendation scenarios involving information sources and the CF algorithms that have been recently developed to address them. We provide a comprehensive introduction to a large body of research, more than 200 key references, with the aim of supporting the further development of recommender systems exploiting information beyond the U-I matrix. On the basis of this material, we identify and discuss what we see as the central challenges lying ahead for recommender system technology, both in terms of extensions of existing techniques as well as of the integration of techniques and technologies drawn from other research areas. Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Information filtering General Terms: Algorithms, Design, Performance Additional Key Words and Phrases:

文档评论(0)

qspd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档