网站大量收购闲置独家精品文档,联系QQ:2885784924

《1995 High-Performance Job-Shop Scheduling With A Time-Delay TD(lambda) Network》.pdf

《1995 High-Performance Job-Shop Scheduling With A Time-Delay TD(lambda) Network》.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《1995 High-Performance Job-Shop Scheduling With A Time-Delay TD(lambda) Network》.pdf

HighPerformance JobShop Scheduling With A TimeDelay TD  Network Wei Zhang and Thomas G Dietterich Department of Computer Science Oregon State University Corvallis Oregon fzhangw tgd gresearchcs orstedu Abstract Jobshop scheduling is an imp ortant task for manufacturing indus tries We are interested in the particular task of scheduling payload pro cessing for NASAs space shuttle program This pap er summa rizes our previous work on formulating this task for solution by the reinforcement learning algorithm T D A shortcoming of this previous work was its reliance on handengineered input features This pap er shows how to extend the timedelay neural network TDNN architecture to apply it to irregularlength schedules Ex p erimental tests show that this TDNNT D network can match the p erformance of our previous handengineered system The tests also show that b oth neural network approaches signicantly out p erform the b est previous nonlearning solution to this problem in terms of the quality of the resulting schedules and the numb er of search steps required to construct them Category Control Navigation and Planning Reinforcement Learning Presentation Preference Poster Intro duction In Tesauros landmark work on TDgammon he showed that the temp oral dierence algorithm T D Sutton can learn an excellent evaluation function for the game of backgammon This is probably the most successful application of reinforcement learning to date The goal of our research is to determine whether this success can b e duplicated in

您可能关注的文档

文档评论(0)

wgvi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档