网站大量收购闲置独家精品文档,联系QQ:2885784924

《1996 The Efficiency of Subgradient Projection Methods for Convex Optimization》.pdf

《1996 The Efficiency of Subgradient Projection Methods for Convex Optimization》.pdf

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《1996 The Efficiency of Subgradient Projection Methods for Convex Optimization》.pdf

SIAM J. CONTROL AND OPTIMIZATION 1996 Society for Industrial and Applied Mathematics Vol. 34, No. 2, pp. 660-676, March 1996 014 THE EFFICIENCY OF SUBGRADIENT PROJECTION METHODS FOR CONVEX OPTIMIZATION, PART I: GENERAL LEVEL METHODS* KRZYSZTOF C. KIWIEL? Abstract. We study subgradient methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We present several variants and show that they enjoy almost optimal efficiency estimates. In another paper we discuss possible implementations of such methods. In particular, their projection subproblems may be solved inexactly via relaxation methods, thus opening the way for parallel implementations. They can also exploit accelerations of relaxation methods based on simultaneous projections, surrogate constraints, and conjugate and projected (conditional) subgradient techniques. Key words, nondifferentiable (nonsmooth) optimization, convex programming, relaxation methods, subgradient optimization, successive projections, linear inequalities, parallel computing AMS subject classifications. 65K05, 90C25 1. Introduction. This is the first of two papers in which we study various mod- ifications of Polyak’s [Po169] subgradient projection algorithm (SPA) and the recently proposed level method of [LNN95, LNN91] for solving the convex program (1.1) f* min{ f(x) x e S} under the following assumptions. S is a nonempty compact convex subset of ]RN; f is a convex function Lipschitz continuous on S with Lipschitz constant Lf; for each x e S we can compute f(x) and a subgradient gf(x) e Of(x) of f at x such that Igf(x)l _ Lf; and for each x e ]RN we can find Ps(x) argm

文档评论(0)

wgvi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档