网站大量收购闲置独家精品文档,联系QQ:2885784924

《1999 The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization》.pdf

《1999 The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization》.pdf

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《1999 The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization》.pdf

MATHEMATICS OF OPERATIONS RESEARCH Vol. 24, No. 1, February 1999 Printed in U.S.A. THE EFFICIENCY OF BALLSTEP SUBGRADIENT LEVEL METHODS FOR CONVEX OPTIMIZATION ¨ KRZYSZTOF C. KIWIEL, TORBJORN LARSSON, AND P. O. LINDBERG We study subgradient methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We establish convergence and efficiency estimates for simple ballstep level controls without requiring that the feasible set be compact. Our framework may handle accelerations based on “cheap” projections, surrogate constraints, and conjugate subgradient techniques. 1. Introduction. We consider methods for the minimization problemf inf f under * S n n the following assumptions. S is a nonempty closed convex set in ,f : 3 is a convex function, for each x S we can computef (x ) and a subgradient g (x ) f (x ) off at x , and f for each x n we can find P x arg min |x y |, its orthogonal projection on S , where S y S | | is the Euclidean norm. The optimal set S * Arg minS f may be empty. Given the kth iterate x k S and a target level f k that estimates f , we may use

文档评论(0)

wgvi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档