网站大量收购闲置独家精品文档,联系QQ:2885784924

《2016 An effective architecture for learning and evolving flexible job-shop schedules》.pdf

《2016 An effective architecture for learning and evolving flexible job-shop schedules》.pdf

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《2016 An effective architecture for learning and evolving flexible job-shop schedules》.pdf

European Journal of Operational Research 179 (2007) 316–333 /locate/ejor Discrete Optimization An effective architecture for learning and evolving flexible job-shop schedules Nhu Binh Ho, Joc Cing Tay *, Edmund M.-K. Lai Evolutionary and Complex Systems Program, School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore Received 4 March 2005; accepted 5 April 2006 Available online 12 June 2006 Abstract In recent years, the interaction between evolution and learning has received much attention from the research commu- nity. Some recent studies on machine learning have shown that it can significantly improve the efficiency of problem solving when using evolutionary algorithms. This paper proposes an architecture for learning and evolving of Flexible Job-Shop schedules called LEarnable Genetic Architecture (LEGA). LEGA provides an effective integration between evolution and learning within a random search process. Unlike the canonical evolution algorithm, where random elitist selection and mutational genetics are assumed; through LEGA, the knowledge extracted from previous generation by its schemata learning module is used to influence the diversity and quality of offsprings. In addition, the architecture specifies a population generator module that generates the initial population of schedules and also trains the schemata learning module. A large range of benchmark data taken from literature and some generated by ourselves

文档评论(0)

wgvi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档