- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《2016 Lagrangian Relaxation Neural Networks for Job Shop Scheduling》.pdf
78 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 1, FEBRUARY 2000
Lagrangian Relaxation Neural Networks for
Job Shop Scheduling
Peter B. Luh, Fellow, IEEE, Xing Zhao, Yajun Wang, and Lakshman S. Thakur
Abstract—Manufacturing scheduling is an important but dif- problem onto an “energy function,” then the solution is a
ficult task. In order to effectively solve such combinatorial opti- natural result of network convergence and can be obtained at a
mization problems, this paper presents a novel Lagrangian relax- very fast speed [8].
ation neural network (LRNN) for separable optimization problems
by combining recurrent neural network optimization ideas with For constrained optimization, the Hopfield-type recur-
Lagrangian relaxation (LR) for constraint handling. The conver- rent networks have been based on the well-known “penalty
gence of the network is proved, and a general framework for neural methods,” which convert a constrained problem to an uncon-
implementation is established, allowing creative variations. When strained one by having penalty terms on constraint violations
applying the network for job shop scheduling, the separability of [8]. The unconstrained problem is then solved by neural
problem formulation is fully exploited, and a new neuron-based
dynamic programming is developed making innovative use of the networks as mentioned above. Generally, a solution to the
subproblem structure. Testing results obtained by software simula- converted problem is the solution to the original one only
tion demonstrate that the method is able to provide near
您可能关注的文档
- 《1998 Efficient Lagrangian relaxation algorithms for industry size job-shop scheduling problems》.pdf
- 《1998 Job shop scheduling with group-dependent setups》.pdf
- 《1998 minimizing job tardiness - prority rules vs adaptive scheduling》.pdf
- 《1998 Minimizing tardy jobs in a two-stage hybrid flowshop》.pdf
- 《1998 Reduction of job-shop problems to flow-shop problems with precedence constraints》.pdf
- 《1999 An effective approach for job-shop scheduling with uncertain processing requirements》.pdf
- 《1999 Convergence of a simple subgradient level method》.pdf
- 《1999 Lagrangian Relaxation Neural Networks for Job Shop Scheduling》.doc
- 《1999 Light on a lattice》.pdf
- 《1999 The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization》.pdf
- 2025年广西中考地理二轮复习:专题四+人地协调观+课件.pptx
- 2025年广西中考地理二轮复习:专题三+综合思维+课件.pptx
- 2025年中考地理一轮教材梳理:第4讲+天气与气候.pptx
- 第5讲+世界的居民课件+2025年中考地理一轮教材梳理(商务星球版).pptx
- 冀教版一年级上册数学精品教学课件 第1单元 熟悉的数与加减法 1.1.6 认识1-9 第6课时 合与分.ppt
- 2025年中考一轮道德与法治复习课件:坚持宪法至上.pptx
- 2025年河北省中考一轮道德与法治复习课件:崇尚法治精神.pptx
- 八年级下册第二单元+理解权利义务+课件-2025年吉林省中考道德与法治一轮复习.pptx
- 精品解析:湖南省娄底市2019-2020学年八年级(上)期中考试物理试题(原卷版).doc
- 2025年中考地理一轮教材梳理:第10讲+中国的疆域与人口.pptx
文档评论(0)