- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《2016 Multi-instance multi-label learning with application to scene classification》.pdf
Multi-Instance Multi-Label Learning with
Application to Scene Classification
Zhi-Hua Zhou Min-Ling Zhang
National Laboratory for Novel Software Technology
Nanjing University, Nanjing 210093, China
{zhouzh,zhangml}@
Abstract
In this paper, we formalize multi-instance multi-label learning, where each train-
ing example is associated with not only multiple instances but also multiple class
labels. Such a problem can occur in many real-world tasks, e.g. an image usually
contains multiple patches each of which can be described by a feature vector, and
the image can belong to multiple categories since its semantics can be recognized
in different ways. We analyze the relationship between multi-instance multi-label
learning and the learning frameworks of traditional supervised learning, multi-
instance learning and multi-label learning. Then, we propose the MIMLBOOST
and MIML SVM algorithms which achieve good performance in an application to
scene classification.
1 Introduction
In traditional supervised learning, an object is represented by an instance (or feature vector) and
associated with a class label. Formally, let X denote the instance space (or feature space) and Y
the set of class labels. Then the task is to learn a function f : X → Y from a given data set
{(x , y ), (x , y ), · · · , (x , y )}, where x ∈ X is an instance and y ∈ Y the known label of x .
1 1 2 2 m m i i i
Although the above formalization is prevailing and successful, there are many real-world problems
which do not fit this
您可能关注的文档
- 《1999 The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization》.pdf
- 《1DT3001A DT3001B 4Channels AC LED Driver IC datasheet》.pdf
- 《1Java 网络编程1》.pdf
- 《1java语言概述》.ppt
- 《1ps passively modelocked laser operation》.pdf
- 《1st_Lesson_All》.pdf
- 《1大功率led路灯散热方案的研究》.pdf
- 《1辑《Super_Junior_05》歌词-中韩音译3对照》.doc
- 《2 java2实用教程(第三版)第二章》.ppt
- 《2 LED_电源经验之谈 5》.pdf
- 2025年广西中考地理二轮复习:专题四+人地协调观+课件.pptx
- 2025年广西中考地理二轮复习:专题三+综合思维+课件.pptx
- 2025年中考地理一轮教材梳理:第4讲+天气与气候.pptx
- 第5讲+世界的居民课件+2025年中考地理一轮教材梳理(商务星球版).pptx
- 冀教版一年级上册数学精品教学课件 第1单元 熟悉的数与加减法 1.1.6 认识1-9 第6课时 合与分.ppt
- 2025年中考一轮道德与法治复习课件:坚持宪法至上.pptx
- 2025年河北省中考一轮道德与法治复习课件:崇尚法治精神.pptx
- 八年级下册第二单元+理解权利义务+课件-2025年吉林省中考道德与法治一轮复习.pptx
- 精品解析:湖南省娄底市2019-2020学年八年级(上)期中考试物理试题(原卷版).doc
- 2025年中考地理一轮教材梳理:第10讲+中国的疆域与人口.pptx
最近下载
- ZZ027 全国职业院校技能大赛(中职组) 婴幼儿保育赛项理论题第3套(含答案).doc VIP
- 单片机(李朝青)课后习题答案.pdf
- ZZ027-全国职业院校技能大赛(中职组)-婴幼儿保育赛项第5套(含答案).doc VIP
- 厦门房地产行业报告.pptx VIP
- 普外科手术并发症处理ppt.pptx
- 劳淋(再发性尿路感染)中医临床路径.doc VIP
- 年处理10万吨乙醇-水筛板精馏塔设计说明书2024.12.18.docx
- 2023年2022版数学课程标准复习题.pdf VIP
- 土地利用现状调查方法技术.pdf
- 2022年人教版中考生物复习知识点思维导图 主题五 动物的运动和行为.ppt VIP
文档评论(0)