网站大量收购独家精品文档,联系QQ:2885784924

《Level Set Segmentation of Hyperspectral Images Using》.pdf

《Level Set Segmentation of Hyperspectral Images Using》.pdf

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Level Set Segmentation of Hyperspectral Images Using》.pdf

Level Set Segmentation of Hyperspectral Images Using Joint Spectral Edge and Signature Information Radford R. Juang+ Philippe Burlina+* Amit Banerjee+ Johns Hopkins University Applied Physics Lab+ Dept. of Computer Science* Laurel, MD 20723 radford.juang@jhuapl.edu Abstract - This paper describes a new method for Bayesian or data clustering approaches. Given an image, segmenting hyperspectral imagery (HSI) using dynamic these methods extract d-dimensional feature vectors from curves. We are concerned about challenging HSI target the data and map them into a d-dimensional feature space. segmentation/detection use cases where the scene Feature vectors from pixels of similar objects or materials includes confusers exhibiting a spectral return similar will form dense local clusters in the feature space. to the desired signature and in close proximity of the Segmentation is then achieved by detecting and object of interest. Our method is based on a level sets segregating these clusters. approach. It fuses all available spectral bands and Bayesian methods generally proceed by formulating incorporates spectral as well as spatial information to statistical model assumptions for the region generation obtain a finer target segmentation. The proposed and image formation processes. Maximum likelihood method applies level set segmentation to HSI by defining

文档评论(0)

mwap + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档