《基于MATLAB边缘检测与提取的几种方法的比较》.doc

《基于MATLAB边缘检测与提取的几种方法的比较》.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《基于MATLAB边缘检测与提取的几种方法的比较》.doc

基于MATLAB边缘检测与提取的几种方法的比较 数字图像边缘检测(Digital Image Processing)又称为计算机图像边缘检测,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。 由于图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映。根据这一特点,提出了多种边缘检测算子:如 Robert算子、Sobel 算子、Prewitt 算子、Laplacian 算子,Canny算子等。这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果。 经典的边界提取技术大都基于微分运算。首先通过平滑来滤除图像中的噪声,然后进行一阶微分或二阶微分运算,求得梯度最大值或二阶导数的过零点,最后选取适当的阈值来提取边界。本文主要介绍几种经典的边缘提取算法,选取两种用MATLAB语言编程实现,对提取结果进行比较和分析。 图边缘检测的基本步骤(1)滤波。边缘检测主要基于导数计算,但受噪声影响。但滤波器在降低噪声的同时也导致边缘强度的损失。 (2)增强。增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值完成。 (3)检测。但在有些图像中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。(4)定位。精确确定边缘的位置。(D:\研一\阳建宏信号\作业\柚子.jpg); %读取图像 J=rgb2gray(I); %转化为灰度图像 K=imadjust(J,[40/255 1]); %调整灰度值 BW=edge(K, roberts); %边缘检测 figure(1);imshow(BW); %显示图像 2、Sobel边缘算子:图像中的每个像素都用这核做卷积。这两个核分别对垂直边缘和水平边缘响应最大,两个卷积的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。Sobel算子认为邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越大,产生的影响越小。 程序如下:I=imread(D:\研一\阳建宏信号\作业\柚子.jpg); %读取图像 J=rgb2gray(I); %转化为灰度图像 K=imadjust(J,[40/255 1]); %调整灰度值 BW=edge(K, sobel); %边缘检测 figure(1);imshow(BW); %显示图像 3、Prewitt算子在一个方向求微分,而在另一个方向求平均,因而对噪声相对不敏感,有抑制噪声作用。但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。 程序如下:I=imread(D:\研一\阳建宏信号\作业\柚子.jpg); %读取图像 J=rgb2gray(I); %转化为灰度图像 K=imadjust(J,[40/255 1]); %调整灰度值 BW=edge(K, prewitt); %边缘检测 figure(2);imshow(BW); %显示图像 这是未经滤波的效果图。 4、Laplacian算子利用二阶导数信息,具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。使得图像经过二阶微分后,在边缘处产生一个陡峭的零交叉点,根据这个对零交叉点判断边缘。Laplacian算子对噪声比较敏感,Laplacian算子有一个缺点是它对图像中的某些边缘产生双重响应。所以图像一般先经过平滑处理,通常把Laplacian算子和平滑算子结合起来生成一个新的模板。 5、Log(Laplacian of Gassian )算法:将高斯滤波和拉普拉斯检测算子结合在一起进行边缘检测的方法。也称之为拉普拉斯高斯算法。该算法的主要思路和步骤是:滤波(滤波函数根据人类视觉特性选为高斯函数)、增强(对平滑图像进行拉普拉斯运算)、检测(边缘检测判据是二阶导数的零交叉点并对应一阶导数的较大峰值)。这种方法的特点是图像首先与高斯滤波器进行卷积,这样既平滑了图像又降低了噪声,孤立的噪声点和较小的结构组织将被滤除。

您可能关注的文档

文档评论(0)

qspd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档