MATLAB的图像分割算法研究.docVIP

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
MATLAB的图像分割算法研究

清华大学本科生毕业设计 题目: 基于MATLAB的图像分割算法研究 作者姓名 XXX 学号 指导教师 XX教授 学科专业 计算机科学与技术 所在学院 计算机学院 提交日期 引言 数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。 基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。该方法将图像映射为带权无向图,把像素视作节点。利用最小剪切准则得到图像的最佳分割 该方法本质上将图像分割问题转化为最优化问题。是一种点对聚类方法。对数据聚类也具有很好的应用前景。但由于其涉及的理论知识较多,应用也还处在初级阶段。因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的必威体育精装版研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。 图像目标分割与提取技术综述 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 图像分割方法的发展和现状 分割问题的困难在于图像数据的模糊和噪声的干扰。前面已经提到,到目前为止,还没有一种或者几种完善的分割方法,可以按照人们的意愿准确的分割任何一种图像。实际图像中景物情况各异,具体问题具体分析,需要根据实际情况选择适合的方法。分割结果的好坏或者正确与否,目前还没有一个统一的评价判断准则,分割的好坏必须从分割的效果和实际应用场景来判断。不过在人类研究图像的历史中,还是积累了许多经典的图像分割方法。虽然这些分割方法不适合所有类型的图像分割,但是这些方法却是图像分割方法进一步发展的基础。事实上,现代一些分割算法恰恰是从经典的分割方法衍生出来的。 早期的图像研究中,图像的分割方法主要可以分为两大类。一类是边界方法,这种方法的假设是图像分割结果的某个子区域在原来的图像中一定会有边缘存在;一类是区域方法,这种方法的假设是图像分割结果的子区域一定会有相同的性质,而不同区域的像素没有共同的性质。这两种方法都有缺点和优点,有的学者也试图把两者结合起来进行图像分割,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。所使用的教学工具和实验手段也是不断的扩展,从时域信号到频域信号处理,近来小波变换也应用在图像分割当中。 研究背景与意义 数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。 边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。需要说明的是:边缘与物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在与物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外成像的过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者们正在试图在边缘提取中加入高层的语义信息。 由于图

文档评论(0)

wannian118 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档