- 1、本文档共37页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
医学上_许多现象之间也都有相互联系_例如:身高与体重、...
相关与回归 医学资料 医学上,许多现象之间也都有相互联系,例如:身高与体重、体温与脉搏、产前检查与婴儿体重、乙肝病毒与乙肝等。在这些有关系的现象中,它们之间联系的程度和性质也各不相同。这里,体温和脉搏的关系就比产前检查与婴儿体重之间的关系密切得多,而体重和身高的关系则介与二者之间。另外,可以说乙肝病毒感染是前因,得了乙肝是后果,乙肝病毒和乙肝之间是因果关系;但是,有的现象之间因果不清,只是伴随关系,例如丈夫的身高和妻子的身高之间,就不能说有因果关系。相关与回归就是用于研究和解释两个变量之间相互关系的。 散点图 为了确定相关变量之间的关系,首先应该收集一些数据,这些数据应该是成对的。例如,每人的身高和体重。然后在直角坐标系上描述这些点,这一组点集称为散点图。 为了研究父亲与成年儿子身高之间的关系,卡尔.皮尔逊测量了1078对父子的身高。把1078对数字表示在坐标上,如图。用水平轴X上的数代表父亲身高,垂直轴Y上的数代表儿子的身高,1078个点所形成的图形是一个散点图。它的形状象一块橄榄状的云,中间的点密集,边沿的点稀少,其主要部分是一个椭圆。 相关的类型 ★正相关 ★负相关 ★完全正相关 ★完全负相关 ★称零相关 相关系数 样本的相关系数用r (correlation coefficient) 相关系数r的值在-1和1之间,但可以是此范围内的任何值。正相关时,r值在0和1之间,散点云图是斜向上的,这时一个变量增加,另一个变量也增加;负相关时,r值在-1和0之间,散点云图是斜向下的,此时一个变量增加,另一个变量将减少。r的绝对值越接近1,两变量的关联程度越强,r的绝对值越接近0,两变量的关联程度越弱。 例 一 一个产科医师发现孕妇尿中雌三醇含量与产儿的体重有关。于是设想,通过测量待产妇尿中雌三醇含量,可以预测产儿体重,以便对低出生体重进行预防。因此收集了31例待产妇24小时的尿,测量其中的雌三醇含量,同时记录产儿的体重。问尿中雌三醇含量与产儿体重之间相关系数是多少?是正相关还是负相关? 分析问题:目的、变量、关系 ∑X=534 ∑Y=99.2 ∑ X2=9876 ∑ Y2=324.8 ∑XY=1750 N=31 问题:我们能否得出结论说明待产妇尿中雌三醇含量与产儿体重之间程正相关,相关系数是0.61。为什么? 相关系数的假设检验 上例中的相关系数r等于0.61,说明了31例样本中雌三醇含量与出生体重之间存在相关关系。但是,这31例只是总体中的一个样本,由此得到的相关系数会存在抽样误差。因为,总体相关系数(?)为零时,由于抽样误差,从总体抽出的31例,其r可能不等于零。所以,要判断该样本的r是否有意义,需与总体相关系数?=0进行比较,看两者的差别有无统计学意义。这就要对r进行假设检验,判断r不等于零是由于抽样误差所致,还是两个变量之间确实存在相关关系。 直线相关的应用 前面我们已经讲过,相关是研究两个变量间的相互关系,而且这种相互关系是用相关系数反应的。在确实存在相关关系的前提下,如果r的绝对值越大,说明两个变量之间的关联程度越强,那么,已知一个变量对预测另一个变量越有帮助;如果r绝对值越小,则说明两个变量之间的关系越弱,一个变量的信息对猜测另一个变量的值无多大帮助。 一般说来,当样本量较大(n100),并对r进行假设检验,有统计学意义时,r的绝对值大于0.7,则表示两个变量高度相关;r的绝对值大于0.4,小于等于0.7时,则表示两个变量之间中度相关;r的绝对值大于0.2,小于等于0.4时,则两个变量低度相关。 前面我们讨论了待产妇尿中雌三醇含量和产儿体重之间的关系,知道了二者之间成正相关。那么,如果我们知道了一位待产妇的尿雌三醇含量,能推断出产儿的体重吗?或产儿的体重可能在什么范围内呢?还有,随着身高的增加,体重也在增大,它们之间也成正相关关系。那么,身高每增加1厘米,体重增加多少克呢?上面的相关关系分析不能提供给我们需要的答案。这些要用直线回归的方法来解决。 当我们知道了两个变量之间有直线相关关系,并且一个变量的变化会引起另一个变量的变化,这时,如果它们之间存在准确、严格的关系,它们的变化可用函数方程来表示,叫它们是函数关系,它们之间的关系式叫函数方程。但在实际生活当中,由于其它因素的干扰,许多双变量之间的关系并不是严格的函数关系,不能用函数方程反映,为了区别于两变量间的函数方程,我们称这种关系式为直线回归方程,这种关系为直线回归. 回归方程 直线回归的任务就是要找出一个变量随另一个变量变化的直线方程,我们把这个直线方程叫做直线回归方程。 回归系数 回归直线的描绘 根据求得的回归方程,可以在自变量X的实测范围内任取两个值,代入方程中,求得相应的两个Y
文档评论(0)