《An.Introduction.to.Machine.Learning.with.Application.in.R》.pdf

《An.Introduction.to.Machine.Learning.with.Application.in.R》.pdf

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
M I C H A E L C L A R K C E N T E R F O R S O C I A L R E S E A R C H U N I V E R S I T Y O F N O T R E D A M E A N I N T R O D U C T I O N T O M A C H I N E L E A R N I N G W I T H A P P L I C AT I O N S I N R Machine Learning 2 Contents Preface 5 Introduction: Explanation Prediction 6 Some Terminology 7 Tools You Already Have 7 The Standard Linear Model 7 Logistic Regression 8 Expansions of Those Tools 9 Generalized Linear Models 9 Generalized Additive Models 9 The Loss Function 10 Continuous Outcomes 10 Squared Error 10 Absolute Error 10 Negative Log-likelihood 10 R Example 11 Categorical Outcomes 11 Misclassification 11 Binomial log-likelihood 11 Exponential 12 Hinge Loss 12 Regularization 12 R Example 13 3 Applications in R Bias-Variance Tradeoff 14 Bias Variance 14 The Tradeoff 15 Diagnosing Bias-Variance Issues Possible Solutions 16 Worst Case Scenario 16 High Variance 16 High Bias 16 Cross-Validation 16 Adding Another Validation Set 17 K-fold Cross-Validation 17 Leave-one-out Cross-Validation 17 Bootstrap 18 Other Stuff 18 Model Assessment Selection 18 Beyond Classification Accuracy: Other Measures of Performance 18 Process Overview 20 Data Preparation 20 Define Data and Data Partitions 20 Feature Scaling 21 Fe

文档评论(0)

ghfa + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档