《14-The-Lorenz-System_2016_Differential-Equations-Dynamical-Systems-and-an-Introduction-to-Chaos》.pdf

《14-The-Lorenz-System_2016_Differential-Equations-Dynamical-Systems-and-an-Introduction-to-Chaos》.pdf

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《14-The-Lorenz-System_2016_Differential-Equations-Dynamical-Systems-and-an-Introduction-to-Chaos》.pdf

14 The Lorenz System So far, in all of the differential equations we have studied, we have not encoun- tered any “chaos.” The reason is simple: The linear systems of the first few chapters always have straightforward, predictable behavior. (OK, we may see solutions wrap densely around a torus as in the oscillators of Chapter 6, but this is not chaos.) Also, for the nonlinear planar systems of the last few chap- ´ ters, the Poincare–Bendixson Theorem completely eliminates any possibility of chaotic behavior. So, to find chaotic behavior, we need to look at nonlinear, higher-dimensional systems. In this chapter we investigate the system that is, without doubt, the most famous of all chaotic differential equations, the Lorenz system from meteorol- ogy. First formulated in 1963 by E. N. Lorenz as a vastly oversimplified model of atmospheric convection, this system possesses what has come to be known as a strange attractor. Before the Lorenz model started making headlines, the only types of stable attractors known in differential equations were equilibria and closed orbits. The Lorenz system truly opened up new horizons in all areas of science and engineering, as many of the phenomena present in the Lorenz system have later been found in all of the areas we have previously investigated (biology, circuit theory, mechanics, and elsewhere). In the ensuing nearly 50 years, much progress has been made in the study of chaotic systems. Be forewarned, however, that the analysis of the chaotic behavior of particular systems, such as the Lorenz system, is usually extremely difficult. Most of the chaotic behavior that is readily understandable arises from geometric models for particular differential equations, rather than from Differential Equations, Dynamical Systems, and an Introduction to Chaos. DOI: 10.1016/B978-0-12-382010-5.00014-2 c 2013 Elsevier Inc. All right

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档