《manifold_learning》.pdf

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《manifold_learning》.pdf

Manifold learning Pattern Recognition Dimensionality Reduction (IV) ZHAO Haitao Zhao Haitao haitaozhao@ecust.edu.cn Locally linear embedding (LLE) Manifold learning Laplacian Eigenmaps In Memoriam SAM T. ROWEIS (1972-2010) was born on April 27, 1972. He obtained a bachelor’s degree with honours from the University of Toronto Engineering Science Program four years later. His first exposure to AI and neural computation occured when - as an exceptional undergraduate - he took the graduate-level Neural Network course taught by Geoffrey Hinton. Here Sam discovered what would become his lifelong interest: unlocking the mysteries of intelligence; motivating all his work was a dream to understand human intelligence, and to build intelligent machines. The LLE paper, published in Science in 2000, revolutionized the field of dimensionality reduction, and gathered over 2700 citations in less than 10 years. Zhao Haitao haitaozhao@ecust.edu.cn Locally linear embedding (LLE) Manifold learning Laplacian Eigenmaps Outline Introduction Algorithm1 Examples Conclusion 1 Reference: 1 “Nonlinear dimensionality reduction by locally linear embedding”, Roweis Saul, Science, 2000. 2 “Think Golob

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档